
Charm++: An Asynchronous
Parallel Programming Model
with an Intelligent Adaptive

Runtime System 

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

Observations: Exascale applications

•  Development of new models must be driven by
the needs of exascale applications
–  Multi-resolution
–  Multi-module (multi-physics)
–  Dynamic/adaptive: to handle application variation
–  Adapt to a volatile computational environment
–  Exploit heterogeneous architecture
–  Deal with thermal and energy considerations

•  So? Consequences:
–  Must support automated resource management
–  Must support interoperability and parallel composition

8/29/12 cs598LVK 2

Decomposition Challenges
•  Current method is to decompose to

processors
–  But this has many problems
–  deciding which processor does what work in

detail is difficult at large scale
•  Decomposition should be independent of

number of processors
–  My group’s design principle since early 1990’s

•  in Charm++ and AMPI

8/29/12 cs598LVK 3

Processors vs. “WUDU”s
•  Eliminate “processor” from programmer’s

vocabulary
–  Well, almost

•  Decomposition into:
–  Work-Units and Data Units (WUDUs)
–  Work-units: code, one or more data units
–  Data-units: sections of arrays, meshes, …
–  Amalgams:

•  Objects with associated work-units,
•  Threads with own stack and heap

•  Who does decomposition?
–  Programmer, compiler, or both

8/29/12 cs598LVK 4

Different kinds of units
•  Migration units:

–  objects, migratable threads (i.e., “processes”), data
sections

•  DEBs: units of scheduling
–  Dependent Execution Block
–  Begins execution after one or more (potentially)

remote dependence is satisfied
•  SEBs: units of analysis

–  Sequential Execution Blocks
–  A DEB is partitioned into one or more SEBs
–  Has a “reasonably large” granularity, and uniformity

in code structure
–  Loop nests, functions, …

8/29/12 cs598LVK 5

Migratable objects programming
model

•  Names for this model:
–  Overdecompostion approach
–  Object-based overdecomposition
–  Processor virtualization
–  Migratable-objects programming model

8/29/12 cs598LVK 6

Adaptive Runtime Systems
•  Decomposing program into a large number of

WUDUs empowers the RTS, which can:
–  Migrate WUDUs at will
–  Schedule DEBS at will
–  Instrument computation and communication at the

level of these logical units
•  WUDU x communicates y bytes to WUDU z every iteration
•  SEB A has a high cache miss ratio

–  Maintain historical data to track changes in application
behavior

•  Historical => previous iterations
•  E.g., to trigger load balancing

8/29/12 cs598LVK 7

Over-decomposition and
message-driven

execution

Migratability

Introspective and
adaptive runtime system

Control Points

Higher-level
abstractions

Scalable Tools
Automatic overlap, pefetch,

compositionality
Emulation for
Perf Prediction

Fault Tolerance

Dynamic load balancing
(topology-aware, scalable)

Languages and Frameworks

Temperature/power
considerations

8/29/12 cs598LVK 8

Utility for Multi-cores, Many-cores,
Accelerators:

•  Objects connote and promote locality
•  Message-driven execution

–  A strong principle of prediction for data and code use
–  Much stronger than principle of locality

•  Can use to scale memory wall:
•  Prefetching of needed data:

–  into scratch pad memories, for example

8/29/12 cs598LVK 9

Scheduler Scheduler

Message Q Message Q

Impact on communication

•  Current use of communication network:
–  Compute-communicate cycles in typical MPI apps
–  So, the network is used for a fraction of time,
–  and is on the critical path

•  So, current communication networks are
over-engineered for by necessity

•  With overdecomposition
–  Communication is spread over an iteration
–  Also, adaptive overlap of communication and

computation

8/29/12 cs598LVK 10

Compositionality
•  It is important to support parallel composition

–  For multi-module, multi-physics, multi-paradigm
applications…

•  What I mean by parallel composition
–  B || C where B, C are independently developed modules
–  B is parallel module by itself, and so is C
–  Programmers who wrote B were unaware of C
–  No dependency between B and C

•  This is not supported well by MPI
–  Developers support it by breaking abstraction

boundaries
•  E.g., wildcard recvs in module A to process messages for

module B
–  Nor by OpenMP implementations:

8/29/12 cs598LVK 11

8/29/12 cs598LVK 12

Without message-driven execution
(and virtualization), you get either:
Space-division

Time

B

C

8/29/12 cs598LVK 13

OR: Sequentialization

Time

B

C

8/29/12 cs598LVK 14

Parallel Composition: A1; (B || C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

Decomposition Independent of numCores

•  Rocket simulation example under traditional MPI

•  With migratable-objects:

–  Benefit: load balance, communication optimizations, modularity

8/29/12 cs598LVK

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

15

Charm++ and CSE Applications

8/29/12 cs598LVK 16

Enabling	 CS	 technology	 of	 parallel	 objects	 and	 intelligent	 run8me	
systems	 has	 led	 to	 several	 CSE	 collabora8ve	 applica8ons	

Synergy	

Well-‐known	 Biophysics	
molecular	 simula8ons	 App	 	

Gordon	 Bell	 Award,	 2002	

Computa8onal	
Astronomy	

Nano-‐Materials..	

ISAM

CharmSimdemics

Stochastic
Optimization

Object Based Over-decomposition:
Charm++

8/29/12 cs598LVK 17

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors

Parallelization Using Charm++

8/29/12 cs598LVK 18

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium, Miami, FL, USA, April 2008.

The computation is decomposed into “natural” objects of the application, which
are assigned to processors by Charm++ RTS

8/29/12 cs598LVK 19

green: communication

Red: integration Blue/Purple: electrostatics

turquoise: angle/dihedral

Orange: PME

Apo-A1, on BlueGene/L, 1024 procs

Charm++’s “Projections” Analysis tool

Time intervals on x axis, activity added across
processors on Y axis

Time

2048

4096

8192

16384

32768

65536

2048 4096 8192 16384 32768 65536

Sp
ee

du
p

Number of Cores

Ideal

PME

cutoff w/
barrier

PME:	 	 162.6	 ms/step	
(~1.1	 ns/day)	

20

Performance on Intrepid (BG/P)

8/29/12 cs598LVK

SMP Performance on Titan(Dev)

21

9 ms/step Number of cores

Ti
m

es
te

p
(m

s/
st

ep
)

 25

 125

298992128K64K16K4K

Cutoff only
PME every 4 steps

13ms/
step

8/29/12 cs598LVK

Object Based Over-decomposition:
AMPI

•  Each MPI process is implemented as a user-level
thread

•  Threads are light-weight and migratable!
–  <1 microsecond context switch time, potentially >100k threads per core

•  Each thread is embedded in a charm++ object (chare)

cs598LVK

Real Processors

MPI
processes

Virtual
Processors
(user-level
migratable
threads)

8/29/12 22

A quick Example:  
Weather Forecasting in BRAMS

•  Brams: Brazillian weather code (based on RAMS)
•  AMPI version (Eduardo Rodrigues, with Mendes

and J. Panetta)

8/29/12 cs598LVK 23

8/29/12 cs598LVK 24

8/29/12 cs598LVK 25

Baseline: 64 objects on 64 processors

8/29/12 cs598LVK 26

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap

8/29/12 cs598LVK 27

With Load Balancing:
1024 objects on 64 processors

No overdecomp (64 threads) 4988 sec
Overdecomp into 1024 threads 3713 sec
Load balancing (1024 threads) 3367 sec

Principle of Persistence
•  Once the computation is expressed in terms of

its natural (migratable) objects
•  Computational loads and communication

patterns tend to persist, even in dynamic
computations

•  So, recent past is a good predictor of near
future

8/29/12 cs598LVK 28

In spite of increase in irregularity and
adaptivity, this principle still applies at
exascale, and is our main friend.

Measurement-based Load Balancing

8/29/12 cs598LVK 29

Regular
Timesteps

Instrumented
Timesteps

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

8/29/12 cs598LVK 30

With Charm++: Use Oct-Tree, and
let Charm++ map subtrees to
processors

Evolution of Universe and
Galaxy Formation

Control flow

8/29/12 cs598LVK 31

CPU Performance

8/29/12 cs598LVK 32

GPU Performance

8/29/12 cs598LVK 33

Load Balancing for Large Machines: I

•  Centralized balancers achieve best balance
–  Collect object-communication graph on one

processor
–  But won’t scale beyond tens of thousands of nodes

•  Fully distributed load balancers
–  Avoid bottleneck but… Achieve poor load balance
–  Not adequately agile

•  Hierarchical load balancers
–  Careful control of what information goes up and

down the hierarchy can lead to fast, high-quality
balancers

•  Need for a universal balancer that works for all
applications

8/29/12 cs598LVK 34

Load Balancing for Large Machines: II

•  Interconnection topology starts to matter again
–  Was hidden due to wormhole routing etc.
–  Latency variation is still small
–  But bandwidth occupancy is a problem

•  Topology aware load balancers
–  Some general heuristic have shown good

performance
•  But may require too much compute power

–  Also, special-purpose heuristic work fine when
applicable

–  Still, many open challenges

8/29/12 cs598LVK 35

OpenAtom
Car-Parinello Molecular Dynamics

NSF ITR 2001-2007, IBM, DOE

8/29/12 cs598LVK 36

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

G. Martyna (IBM)
M. Tuckerman (NYU)

L. Kale (UIUC)
J. Dongarra

Using Charm++ virtualization, we can efficiently scale
small (32 molecule) systems to thousands of processors

Decomposition and Computation
Flow

8/29/12 cs598LVK 37

Topology Aware Mapping of Objects

8/29/12 cs598LVK 38

Improvements by topological aware
mapping of computation to processors

8/29/12 cs598LVK 39

The simulation of the right panel, maps computational work to processors taking the network
connectivity into account while the left panel simulation does not. The “black’’ or idle time
processors spent waiting for computational work to arrive on processors is significantly
reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the
degree of freedom needed for flexible mapping

OpenAtom Performance Sampler

8/29/12 cs598LVK 40

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:
K-points

Saving Cooling Energy

•  Some cores/chips might get too hot
–  We want to avoid

•  Running everyone at lower speed,
•  Conservative (expensive) cooling

•  Reduce frequency (DVFS) of the hot cores?
–  Works fine for sequential computing
–  In parallel:

•  There are dependences/barriers
•  Slowing one core down by 40% slows the whole

computation by 40%!
–  Big loss when the #processors is large

8/29/12 cs598LVK 41

Temperature-aware Load Balancing
•  Reduce frequency if temperature is high

–  Independently for each core or chip
•  Migrate objects away from the slowed-down

processors
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Recently implemented in experimental version
–  SC 2011 paper

8/29/12 cs598LVK 42

Cooling Energy Consumption

•  Both schemes save energy as cooling energy
consumption depends on CRAC set-point (TempLDB
better)

•  Our scheme saves up to 57% (better than w/o TempLDB)
mainly due to smaller timing penalty

43

Jacobi2D on 128
Cores

8/29/12 cs598LVK

Benefits	 of	 Temperature	 Aware	 LB	

Zoomed	 projec8on	 8meline	 for	 two	 itera8ons	 without	 temperature	 aware	
LB	

Projec8ons	 8meline	 without	 (top)	 and	 with	 (boTom)	 temperature	 aware	 LB	

8/29/12 cs598LVK 44

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

 14.4C 16.6C
 18.9C

 21.1C

 23.3C

 25.6C

 14.4C

 16.6C

 18.9C

 21.1C

 23.3C

TempLDB
w/o TempLDB

Benefits	 of	 Temperature	 Aware	 LB	

8/29/12 cs598LVK 45

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

 14.4C 16.6C
 18.9C

 21.1C

 23.3C

 25.6C

 14.4C

 16.6C

 18.9C

 21.1C

 23.3C

TempLDB
w/o TempLDB

Other Power-related Optimizations
•  Other optimizations are in progress:

–  Staying within given energy budget, or power budget
•  Selectively change frequencies so as to minimize impact

on finish time
–  Reducing power consumed with low impact on finish

time
•  Identify code segments (methods) with high miss-rates

–  Using measurements (principle of persistence)
•  Reduce frequencies for those,
•  and balance load with that assumption

–  Use critical paths analysis:
•  Slow down methods not on critical paths
•  Aggressive: migrate critical-path objects to faster cores

8/29/12 cs598LVK 46

Fault Tolerance in Charm++/AMPI

•  Four Approaches:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint/restart
–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Common Features:
–  Easy checkpoint:

•  migrate-to-disk leverages object-migration capabilities
–  Based on dynamic runtime capabilities
–  Can be used in concert with load-balancing

schemes

8/29/12 cs598LVK 47

In-memory checkpointing
•  Is practical for many apps

–  Relatively small footprint at checkpoint time
•  Very fast times…
•  Demonstration challenge:

–  Works fine for clusters
–  For MPI-based implementations running at centers:

•  Scheduler does not allow job to continue on failure
•  Communication layers not fault tolerant

–  Fault injection: dieNow(),
–  Spare processors

8/29/12 cs598LVK 48

8/29/12 cs598LVK 49

8/29/12 cs598LVK 50

8/29/12 cs598LVK 51

Scalable Fault tolerance

•  Faults will be common at exascale
–  Failstop, and soft failures are both important

•  Checkpoint-restart may not scale
–  Requires all nodes to roll back even when just

one fails
•  Inefficient: computation and power

–  As MTBF goes lower, it becomes infeasible

8/29/12 cs598LVK 52

Message-Logging
•  Basic Idea:

–  Messages are stored by sender during execution
–  Periodic checkpoints still maintained
–  After a crash, reprocess “resent” messages to regain

state
•  Does it help at exascale?

–  Not really, or only a bit: Same time for recovery!
•  With virtualization,

–  work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

–  Virtualization helps fault-free case as well

8/29/12 cs598LVK 53

Message-Logging (cont.)
•  Fast Parallel restart performance:

–  Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16
–  Checkpoint taken every 30s, failure inserted at t=27s

8/29/12 cs598LVK
54

54

55

Time

Progress

Pow
er

Normal
Checkpoint-Resart
method

8/29/12 cs598LVK

Power consumption
is continuous

Progress is slowed
down with failures

56

Message logging +
Object-based
virtualization

8/29/12 cs598LVK

Power consumption
is lower during
recovery

Progress is faster
with failures

HPC Challenge Competition
•  Conducted at Supercomputing
•  2 parts:

–  Class I: machine performance
–  Class II: programming model productivity

•  Has been typically split in two sub-awards
–  We implemented in Charm++

•  LU decomposition
•  RandomAccess
•  LeanMD
•  Barnes-Hut

•  Main competitors this year:
–  Chapel (Cray), CAF (Rice), and Charm++ (UIUC)

8/29/12 cs598LVK 57

Strong Scaling on Hopper for
LeanMD

8/29/12 cs598LVK 58

Gemini Interconnect, much less noisy

CharmLU: productivity and
performance

•  1650 lines of source
•  67% of peak on Jaguar

8/29/12 cs598LVK 59

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l T
F

lo
p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Barnes-Hut

8/29/12 cs598LVK 60

0.50

1.00

2.00

4.00

8.00

16.00

2k 4k 8k 16k

T
im

e
/s

te
p
 (

se
co

n
d
s)

Cores

Barnes-Hut scaling on BG/P

50m
10m

High Density Variation with a Plummer distribution of particles

Charm++ interoperates with MPI

Charm++
Control

8/29/12 cs598LVK 61

A View of an Interoperable Future

8/29/12 cs598LVK 62

X10

8/29/12 cs598LVK 63

Interoperability allows faster evolution of programming models

Evolution doesn’t lead to a single winner species,
but to a stable and effective ecosystem.

Similarly, we will get to a collection of viable
programming models that co-exists well together.

Summary
•  Do away with the notion of processors

–  Adaptive Runtimes, enabled by migratable-objects
programming model

•  Are necessary at extreme scale
•  Need to become more intelligent and introspective
•  Help manage accelerators, balance load, tolerate faults,

•  Interoperability, concurrent composition become even
more important
–  Supported by Migratable Objects and message-driven

execution
•  Charm++ is production-quality and ready for your

application!
–  You can interoperate with Charm++, AMPI, MPI and OpenMP

modules
•  New programming models and frameworks

–  Create an ecosystem/toolbox of programming paradigms
rather than one “super” language

8/29/12 cs598LVK 64

More Info: http://charm.cs.illinois.edu/

