
Chapter 5

Messages

Thus far, we have encountered Charm++ programs demonstrating inter-object communication
through marshalled parameters. In this scheme the Charm++ interface (.ci) translator uses
the signature of an entry method to generate C++ code at the source and target of invocations
of the entry method. At the sender, the generated code packs the input parameteres of the
invocation into a buffer. This buffer is communicated to the receiver chare as a message,
whereupon generated code unpacks the arguments from the received buffer and passes them
into a local method invocation on the recipient.

This style of parameter marshalling gives programmers the facility of specifying commu-
nication through method invocations. The associated syntax is both familiar and convenient
to C++ programmers. However, for reasons of efficiency, it is sometimes beneficial to directly
specify the contents of the message buffer communicated between a sender and a recipient
chare. This is demonstrated in the example below.

Consider a simplistic parallel program that computes the product C of two square input
matrices A and B, of dimensions N ×N . Suppose that the tiles of A and B are decomposed
over elements of W , such that tiles A[i, j] of A and B[i, j] of B are available at W [i, j]. Here,
i, j ∈ {1..N/T}, where T is the dimension of each square tile. Chare array element W [i, j]
computes the matrix products Pk = A[i, k] × B[k, j] for all k ∈ {1..N/T}. Then, C[i, j] can
be obtained as the sum C[i, j] =

∑
k Pk. To compute an individual product Pr in the sum,

W [i, j] must await the receipt of a row broadcasts by W [i, r], giving it A[i, r], and column
broadcasts by W [r, j] giving it B[r, j]. Since these tiles arrive in different messages, in the
parameter-marshalled version of the program, we would have to copy the tile received first
until we both of them have been received. On the other hand, if we were given access to
the underlying messages themselves, we could simply save a pointer to the message received
first, and perform the tile multiplication when the second one is received. This would result
in less copying overhead, yielding a more efficient parallel program.

Implicit in the discussion above was the fact that once a parameter-marshalled entry

113



114 CHAPTER 5. MESSAGES

method finishes, the runtime system discards the memory buffer underlying the marshalled
parameters. Therefore, in order to access received parameters in a different entry method
invocation, they must be saved via copying. In contrast, the runtime system does not discard
the memory buffer passed into an entry method that is invoked with a message. It is up to
the programmer to manage the memory associated with the input message at the receiving
end. This fact can be used to improve performance in parallel programs.

In this chapter, we will see how objects can communicate with each other by directly
specifying the contents of the messages that they exchange.

5.1 Fixed-Size Messages

Charm++ lets programmers use two types of messages in their programs: those whose size is
fixed, and can be determined at compile-time, and those with variable sizes, which depend on
the values of variables at run-time. We discuss fixed-size messages first, using two examples,
namely a ping-pong program and Gauss-Seidel relaxation for linear system solution.

5.1.1 A Ping-Pong Program

In this subsection, we will develop a simple ping-pong program, which involves two chare-
array elements. The first of these chares creates a message that encapsulates a single integer
field, which represents the number of ping-pong iterations remaining. This is set by the first
chare to a predetermined value, after which the message is sent to the second chare. This is
the ping message, upon receipt of which the second chare examines the integer field sent to
it and responds to the first chare with a pong message. When it receives the pong message,
the first chare decrements the number of iterations remaining, thereby completing one round
of computation. If there is a non-zero number of ping-pong iterations remaining, the next
round is initiated, and so on. The Charm++ interface code for this program is presented in
Figure 5.1.

1 mainmodule pingpong {

2 message StartMsg;

3 message PingPongMsg;

4 ...

5 };

Figure 5.1: Excerpt form the CI file for the ping-pong program. Message types are declared
through the message keyword.

Note the use of the message keyword in code above. This declares the types StartMsg



5.1. FIXED-SIZE MESSAGES 115

and PingPongMsg to be types of message. The types StartMsg and PingPongMsg are then
declared as in Figure 5.2. We do not include the declarations of the main chare or the one-
dimensional chare array Worker, the members of which participate in the ping-pong operation.

1 #include "pingpong.decl.h"

2

3 struct StartMsg : public CMessage_StartMsg {

4 int totalIterations;

5 StartMsg(int i) : totalIterations(i) {}

6 };

7

8 struct PingPongMsg : public CMessage_PingPongMsg {

9 int left;

10 PingPongMsg(int i) : left(i) {}

11 };

Figure 5.2: Declaration of message types.

Note that a class (or a struct) that is to be passed as a message must inherit from a
translator-generated base class. For a message type TYPE, the generated class will bear the
name CMessage TYPE. In the example, the base class for StartMsg is CMessage StartMsg,
and that for PingPongMsg is CMessage PingPongMsg. Now, let us see how these user-defined
types can be used to achieve inter-object communication through asynchronous sending of
messages.

1 Main::Main(CkArgMsg *m){

2 CProxy_Worker workerProxy = CProxy_Worker::ckNew(2);

3 workerProxy[0].start(new StartMsg(atoi(m->argv[1])));

4 delete m;

5 }

Figure 5.3: Definition of the Main::Main constructor for the ping-pong program. The main
chare creates a chare array with two members, and sends a message to the first of these
members, thereby initiating the ping-pong computation.

First, we examine the main chare, which is a singleton of type Main. The constructor
of this class, where control first enters user code, is shown in Figure 5.3. Note that the
constructor itself receives a system-defined message of type CkArgMsg. The argc and argv



116 CHAPTER 5. MESSAGES

fields of this message provide the number of command-line arguments passed to the program,
and the array of C strings holding the arguments themselves, respectively. For instance,
once the two-element object array of type Worker is created in line 2, m->argv[1] is used to
obtain the number of ping-pong rounds to perform. The number of rounds is embedded within
a StartMsg (cf. the StartMsg constructor in Figure 5.2.) This message is sent to the first
worker, worker[0] by passing it as an input argument to the method CProxy Worker::start

of the corresponding proxy, workerProxy[0]. Note that, given the asynchronous nature of
method invocations in Charm++, no guarantee is provided as to when Worker::start will
be invoked on worker[0] after CProxy Worker::start has been called on workerProxy[0].
In particular, it cannot be assumed that worker[0] will have received the initiating message
when control returns from CProxy Worker::start. On line 4, the received CkArgMsg is
deleted, since management of memory associated with messages is the responsibility of the
programmer.

1 void Worker::start(StartMsg *m){

2 PingPongMsg *pm = new PingPongMsg(m->totalIterations);

3 CkPrintf("[%d] ping (%d)\n", thisIndex, pm->left);

4 thisProxy[1].ping(pm);

5 delete m;

6 }

Figure 5.4: The Worker::start method, where the ping-pong control flow begins. This
method is invoked on worker[0], which creates a ping message and sends it to worker[1].

Figure 5.4 shows the definition of the Worker::start method, which is the end-point
for the message sent by the main chare to initiate the computation (cf. Figure 5.3, above.)
A message of type PingPongMsg is created on line 1, with a number of iterations given
by the totalIterations field of the StartMsg received by the method as input. On line
3, this newly constructed message is sent to worker[1], by (asynchronously) invoking the
Worker::ping method on the associated proxy.

To round out the example, we present the code for Worker::ping and Worker::pong

in Figures 5.5 and 5.6. Recall that method Worker::ping was invoked on worker[1] by
worker[0]. Chare array object worker[1] responds to this ping by sending worker[0]

a pong via the CProxy Worker::pong method of the corresponding proxy (referred to as
thisProxy[0], on line 3.) Notice that instead of creating a new PingPongMsg and deleteing
the input message in Worker::ping, we reuse the input by passing it to the CProxy Worker::pong

method. This is a perfectly valid Charm++ idiom and moreover, more convenient than param-
eter marshalling, the previously mentioned alternative. A word of caution, however: whereas
it is legal to repeatedly invoke a parameter-marshalled entry method with the same buffers



5.1. FIXED-SIZE MESSAGES 117

1 void Worker::ping(PingPongMsg *m){

2 CkPrintf("[%d] pong (%d)\n", thisIndex, m->left);

3 thisProxy[0].pong(m);

4 }

Figure 5.5: The Worker::ping method, which initiates a round of ping-pong, and is invoked
by object worker[0] on worker[1].

in memory, one cannot reuse the memory allocated for a previously sent message. One can
obtain a valid buffer for a message through the new operator, as shown in Figure 5.3.

1 void Worker::pong(PingPongMsg *m){

2 if(--m->left > 0){

3 CkPrintf("[%d] ping (%d)\n", thisIndex, m->left);

4 thisProxy[1].ping(m);

5 }

6 else{

7 delete m;

8 CkExit();

9 }

10 }

Figure 5.6: The Worker::pong method, which is invoked on worker[0] by worker[1], and
constitutes worker[1]’s response to the ping it received from worker[0].

Object worker[0] receives the pong response in Worker::pong (Figure 5.6.) It decre-
ments the number of remaining ping-pong rounds by decrementing the left field of the input
PingPongMsg. If this number is non-zero, worker[0] initiates the next round of the ping-pong
computation. Once again, we reuse the memory buffer associated with the input message in
the asynchronous method invocation thisProxy[1].ping(m). On the other hand, if we have
completed the designated number of ping-pong iterations (set in Worker::start, Figure 5.4),
we delete the input message and signal the end of the parallel program through CkExit().

It is worth noting that one of the common sources of overheads in programs (especially,
fine-grained computations) is the overhead of memeory allocation. This overhead is reduced
here because we reuse the message.



118 CHAPTER 5. MESSAGES

1 void updateAll(){

2 for(int I = 1; I < matrixDimY-1; I++)

3 for(int J = 1; J < matrixDimX-1; J++)

4 D[I,J] = AVG(D[I,J],D[I,J-1],D[I,J-1],D[I,J+1],D[I+1,J]);

5 }

Figure 5.7: Ordering the computations in the Gauss-Seidel method.

5.1.2 Gauss-Seidel Relaxation

Now that we have gained an understanding of the mechanics of fixed-size messages, we will
use them to create a more substantive parallel program than the ping-pong computation in
the previous subsection. The Gauss-Seidel relaxation procedure is used to solve differential
equations using the method of differences. We are given a large matrix of points, which
represents the discretization of a continuous domain. Our objective is to obtain a numerical
solution of a system of difference equations representing the evolution of some physical phe-
nomenon over the domain. The solution will give us the state of the domain under steady
state, i.e. we do not consider the behavior of the system with time: our goal is only to arrive
at the final state of the system.

The use of the method of differences yields an iterative computation pattern in which the
value of each point is computed as a function of the values of its neighbors, and the value
of the point itself. But which values of the neighbors do we use, the ones computed in the
previous iteration, or those computed in the current one? The Gauss-Seidel procedure differs
from the Jacobi algorithm (see § 3.5) in its decision with regard to this particular question.
In the case of the Jacobi algorithm, we saw that all of the points were updated in iteration
I using the values of the its neighbors from iteration I − 1. In Gauss-Seidel relaxation, the
value of a point in iteration I depends on the values from both iteration I and iteration I−1.
Depending on the order in which the set of points is updated (i.e. left-to-right and top-to-
bottom, or right-to-left and top-to-bottom, etc.), we get a variety of dependency structures.
For example, let us update the points in a left-to-right and top-to-bottom manner. Then,
the value of an interior point in iteration I depends on the values of its right and bottom
neighbors from iteration I − 1, and on the values of its left and top neighbors from the
current iteration, I. This causes the solution to converge quicker than the Jacobi method,
since updated values are available in the current iteration along a wavefront that proceeds
towards the right and bottom from the top-left corner of the domain. Moreover, since (most)
updated values are used within iterations, the Gauss-Seidel method requires far less memory
than the Jacobi algorithm.

Parallelization. So how do we go about parallelizing this method? We can see that the



5.1. FIXED-SIZE MESSAGES 119

1 void updateAllTiled(){

2 int numTiles = matrixDimX/TILE_SIZE;

3

4 for(int I = 0; I < numTiles; I += TILE_SIZE)

5 for(int J = 0; J < matrixDimX; J += TILE_SIZE)

6 for(int II = I; II < I+TILE_SIZE; II++)

7 for(int JJ = J; JJ < J+TILE_SIZE; JJ++)

8 D[II,JJ] = AVG(D[II,JJ],D[II,JJ-1],D[II,JJ-1],D[II,JJ+1],D[II+1,JJ]);

9 }

Figure 5.8: A tiled ordering of the computations in the Gauss-Seidel method.

computation of a point’s value depends on the results of computations that have occurred
immediately to its left, and immediately above it. More concretely, let D be the matrix of
points whose values we would like to calculate. The individual point in the i-th row and j-th
column of this matrix can be identified as D[i, j]. Considering only interior points for the
moment, D[i, j] depends on the values of D[i, j − 1] and D[i − 1, j] in the current iteration.
Therefore, the computation at D[i, j] can occur only after the computations at D[i, j − 1]
and D[i− 1, j]. Figure 5.7 shows one way of achieveing the correct, left-to-right and top-to-
bottom ordering of computations. Notice that the loop nest in Figure 5.7 overspecifies the
dependencies in the computation. In particular, we needn’t update all the points in a row
before moving to the next row. We could adopt a tiled update scheme without violating the
dependencies. This is shown in Figure 5.8.

Note that just as the pseudocode in Figure 5.7, Figure 5.8 too overspecifies the order of
computations. Here, we find that even though tile t1 may not have a data dependency on
tile t2, t1 might still occur after t2 due to the sequential nature of the iterations of the for

construct. For instance, the tile corresponding to (I, J) = (0, 1) is not data-dependent on the
tile corresponding to (I, J) = (2, 0), but still occurs after it in the sequence of tile updates.
In order to construct a good parallel algorithm for this tile-based relaxation technique, we
must first sketch the true dependencies between tiles, and therefore find the tiles that can be
updated concurrently.

The true data dependencies in the code from Figure 5.8 are illustrated in Figure 5.9.
There are four panels in this figure, each representing a step in one iteration of the relaxation
procedure. Squares of various colors represent tiles. Green squares represent tiles that have
not yet been updated. Blue squares (occurring from the second panel onwards) are tiles
that were updated in a previous step. Notice that in each step, each of the three rows of
the matrix has at most one tile that is neither green nor blue. These are the tiles currently
being updated in that step. For instance, the red tile at (0, 0) is the only one being updated



120 CHAPTER 5. MESSAGES

Figure 5.9:

in the first step. Dependencies between tiles are indicated by arrows. Arrows are of two
types: those colored dark green and pointing either to the left or up, those colored black and
pointing rightward or downward. Arrows of the former type indicate dependencies on tiles
that haven’t been updated in the current iteration (i.e. are green), whereas the black, right-
and downward pointing arrows indicate dependencies on blue tiles, which were updated in
the previous step of the current iteration.

Let us examine the sequence of updates depicted in Figure 5.9. The first panel shows
step zero of some iteration. In it, the tile (0, 0) in the top-left corner of the matrix is updated
using the left and top boundaries of its right and bottom neighbors, respectively. It is worth
restating that these boundaries hold data that hasn’t yet been updated in this iteration. In
step one, tiles (0, 1) and (1, 0) can be updated concurrently. In order to update tile (0, 1), we
require the left and top boundaries of (0, 2) and (1, 1), respectively, whereas (1, 0) requires
the left and top boundaries of (1, 1) and (2, 0), respectively. Once again, given the directions
of the corresponding arrows, we can tell that these are old boundaries, in that they haven’t
been updated in the current iteration. Both (0, 1) and (1, 0) also require new boundaries from
(0, 0): the update of (0, 1) cannot proceed without its right boundary, whereas the update of
(1, 0) requires the bottom boundary of (0, 0). Note that these boundaries come from a tile
in blue, which was updated in the previous step of the current iteration. We leave it to the
reader to reason similarly about the dependencies in steps two and three.

This analysis leads to the following parallelization strategy: use a row decomposition
to assign a number of contiguous rows of the input matrix D to each element of a one-
dimensional chare array. As discussed previously, the relaxation procedure is iterative, and
in each iteration a chare performs as many steps as there are tiles in a row. In the data-driven
mold of Charm++, a chare takes the following actions in each step:

1. sendOldBoundary(). Send (old) top boundary of current tile to top neighbor, if there
exists such a neighbor.

2. recv(). Receive as many boundaries as are expected, given the position of the cur-
rent tile in the matrix. Note that even though a chare may require as many as four
boundaries (two old and two new) in order to update a tile, it may receive only two of
these from other chares: one from the neighboring chare above, and the other from the



5.1. FIXED-SIZE MESSAGES 121

chare below it. Moreover, if the chare receives a bottom boundary from its neighboring
chare above, then this boundary must be a new one, updated in the current iteration.
Once the requisite number of boundaries has been received, they are used to update
the current tile.

3. sendNewBoundary(). Having computed the updated values of the points in the current
tile, the chare must now send the updated, new bottom boundary of this tile to its
neighbor chare below it. Once the neighbor has received this new boundary, as well as
the old top boundary from its bottom neighbor, it will update its current tile and send its
updated boundaries to its neighbors, thereby advancing the wavefront of computation
along the sub- and super-antidiagonals of the matrix.

1 Main(CkArgMsg *m){

2 Nx = atoi(m->argv[1]); Ny = atoi(m->argv[2]);

3 n = atoi(m->argv[3]); errorTolerance = strtod(m->argv[4], NULL);

4 previousError = std::numeric_limits<double>::max();

5

6 workerProxy = CProxy_GSWorker::ckNew(n);

7 workerProxy.sendOldBoundary();

8 }

Figure 5.10:

Let’s discuss this parallelization in terms of concrete Charm++ code. Figure 5.10 shows
the initialization code for our parallel Gauss-Seidel relaxation program. Chare array workers
is a one-dimensional array of type GSWorker and size n. Each workers[I] holds elements
D[0 : Nx−1, I(Ny/n) : (I+1)(Ny/n)−1] of the matrix, where Nx and Ny are the dimensions
of D along the x and y dimensions, respectively. The dimensions of each tile are T ×Ny/n.
We initiate the computation by acquiring values for the various parameters, creating the
workers array, and directing each element in the chare array to send its old top boundary to
its top neighbor if it exists (line 7, sendOldBoundary()).

Before we look at the code for sendOldBoundary(), we consider the structure of messages
exchanged between chares. Figure 5.11 shows the fixed size structure BoundaryMsg, which is
used to communicate tile boundaries between chares. First, note that even though an array
of values, data, is embedded within this message type, its size can still be determined via
the sizeof operator at compile-time. Therefore, this constitutes a fixed-size message.

The code for GSWorker::sendOldBoundary() is given in Figure 5.12. Each chare on
which this method is invoked, uses the utility function rowToMsg to copy its top row into a



122 CHAPTER 5. MESSAGES

1 struct BoundaryMsg : public CMessage_BoundaryMsg {

2 int tag;

3 double data[TILE_SIZE];

4

5 BoundaryMsg(int t) : tag(t) {}

6 };

Figure 5.11:

1 void GSWorker::sendOldBoundary(){

2 if(thisIndex > 0){

3 BoundaryMsg *msg = rowToMsg(TOP_ROW,BOTTOM_BDRY);

4 thisProxy[thisIndex-1].recv(msg);

5 }

6 }

7

8 BoundaryMsg *GSWorker::rowToMsg(int row, int tag){

9 BoundaryMsg *msg = new BoundaryMsg(tag);

10 memcpy(msg->data,&myDomain[AT(row,myTile,0)],sizeof(double)*TILE_SIZE);

11 return msg;

12 }

Figure 5.12:

BoundaryMsg (line 3). This message is sent to the GSWorker::recv method of the chare above
the sender (line 4). Note that the sent message is tagged as carrying the bottom boundary
(BOTTOM BDRY) for the benefit of the recipient chare: it allows the recipient to distinguish the
two boundaries that it might receive, one from the chare above it, and from the chare below
it. A brief discussion of the creation of messages in rowToMsg is warranted. On line 9, a
BoundaryMsg is allocated. Next, the appropriate row, whose starting position is a function
(AT(...)) of the row and current tile, is copied into the message’s data buffer.

Chares receive boundaries through the GSWorker::recv(BoundaryMsg*) entry method,
shown in Figure 5.13. On line 2, we see how the tag of a boundary message is used by
the recipient chare to store different boundaries. Next, it checks whether it has received
all the boundaries needed for its current tile (line 5; recall that the number of expected
boundaries depends on the position of the tile current within the matrix). If so, the current
tile is updated, followed by the communication of the updated bottom boundary to the chare



5.1. FIXED-SIZE MESSAGES 123

below it in the row decomposition. Thereafter, the chare checks whether it has updated all
the chunks assigned to it (line 11), and if so, contributes to a reduction that computes the
residual of the relaxation (line 13). Control is transferred to the main chare at this point. If
the chare still has some outstanding tiles to update, it moves to the next tile and sends out
the old, top boundary of the next tile to the neighbor above it (line 16). Since the received
boundaries have now been consumed, the corresponding messages are deleted in line 19.

1 void GSWorker::recv(BoundaryMsg *m){

2 myBoundaries[m->tag] = m;

3 nExpected--;

4

5 if(nExpected == 0){

6 compute();

7 resetExpected();

8 sendNewBoundary();

9 myTile++;

10

11 if(myTile == Nx/TILE_SIZE){

12 contribute(sizeof(double),&myError,CkReduction::max_double,CkCallback(CkReductionTarget(Main,recvError),mainProxy));

13 reset();

14 }

15 else sendOldBoundary();

16

17 for(int i = 0; i < NUM_BOUNDARIES; i++){

18 if(myBoundaries[i] != NULL) delete myBoundaries[i];

19 myBoundaries[i] = NULL;

20 }

21 }

22 }

Figure 5.13:

It remains for us to examine the actual use of received messages in GSWorker::compute.
Recall that a chare that receives boundary messages saves pointers to them in the myBoundaries
array (cf. Figure 5.13, line 2.) When the expected number of messages has been received, a
chare calls compute, wherein a number of functions are invoked (not yet presented) to calcu-
late the updated values of the points in the current tile. We investigate two such methods,
namely updateTopRow and updateBottomRow, in Figure 5.14.

The first of these functions, updateTopRow, uses the (new) bottom boundary of its upper



124 CHAPTER 5. MESSAGES

neighbor to update its topmost row. In this function, for each element in the top row of the
current tile, i.e. myDomain[AT(TOP ROW,myTile,j)], we compute an average value based on
the four neighbors of the element. Note that the upper neighbor of this element in the topmost
row comes from the boundary message (line 6). Similarly, updateBottomRow uses the (old)
top boundary of its lower neighbor to update elements in the bottom row of its chare’s domain.
In this function, the bottom neighbor for element myDomain[AT(BOTTOM ROW,myTile,j)] is
the element myBoundaries[BOTTOM BDRY]->data[j], received from its lower neighbor. The
AVG function also computes the iterative maximum residual (lines 10 and 23). This residual
is contributed to the global reduction that ends each iteration (cf. Figure 5.13.)

To round out the example, Figure 5.15 shows the target of the global reduction that
computes the maximum residual for each iteration of the relaxation. This method receives
a system-defined message type of CkReductionMsg, from which is extracted the value of the
global maximum residual (line 2). If the residual is too large (line 4), we continue with the
next iteration by invoking sendOldBoundary on each chare (line 5). Otherwise, we deem the
relaxation to have converged, and terminate the computation (line 8).

5.2 Variable-Size Messages

(As a simple example, we can even make the gauss seidel using varsize messages, providing
motivation for modifying the above program; Say, the array size is meant to be provided on the
command line and/or we want to experiment with different TILESIZEs for performance).

So far, we have only discussed the use of fixed-size messages. What if objects need to
send variable amounts of data to each other, such that the size of sent messages can only be
determined dynamically? For instance, in the MD code from § 4.1, how would a chare send
its particles to its neighbor in the ring using a message, given that we do not know at compile
time the number of particles held by each chare? Charm++ provides variable-size messages
for situations such as these. We can pack arbitrary amounts of typed data into a message
through the following three steps.

Register message type with Charm++. Suppose that we would like to communicate an ar-
ray of elements of data type MyFirstStruct, and another of elements of type MySecondStruct
through a variable-size message of type MyVarSizeMsg. To indicate to the Charm++ transla-
tor that the true size of a message of type MyVarSizeMsg can only be determined at run-time,
we write the .ci code shown in Figure 5.16. Note the square bracket notation used to mark
firstArray and secondArray as arrays of variable size. This causes the Charm++ translator
to generate dynamic allocation and packing code for members firstArray and secondArray

of MyVarSizeMsg. We will discuss how the sizes of individual arrays are given momentarily.

Complete message structure. Only those members of MyVarSizeMsg are of interest
to the Charm++ translator for which dynamic allocation and packing code must be gen-



5.2. VARIABLE-SIZE MESSAGES 125

erated. Other, fixed-size, member fields are specified in the C++ declaration of the message
type, and not in the .ci code. For instance, if MyVarSizeMsg had another data mem-
ber, MyThirdStruct anotherField, we would specify it only in the C++ declaration of the
MyVarSizeMsg class, as shown in Figure 5.17.

Specify sizes of varsize arrays in message. Next, we must specify the size of each
individual typed array in the varsize message. This is done when the message type is instan-
tiated using the new operator, For varsize messages, we must use an overloaded version of the
new operator, one which allows us to specify the size, in number of elements, of each of the
variable-size arrays in the message. For instance, if we wanted to create a MyVarSizeMsg mes-
sage large enough to hold a firstArray with nElementsFirst elements and a secondArray

with nElementsSecond, we would create a new message as shown in Figure 5.18. Note the
order of arguments given to the new operator: this order corresponds to the order in which
the varsize arrays appear in the .ci file.

Note that in the above, we assumed that data types MyFirstStruct, MySecondStruct and
MyThirdStruct were of fixed size, even though arrays firstArray and secondArray could
be of arbitrary size. In particular, we assumed that data elements of type MySecondStruct

and MyThirdStruct didn’t maintain pointers to other data structures that were meant to be
shipped along with them. We will discuss the packing of such complex data types in § 5.3.

5.2.1 Example: Simple Molecular Dynamics

Let’s round out this section with an example that gives a concrete illustration of the declara-
tion, definition, allocation and deallocation of variable-size messages in a Charm++ program.
For this purpose, we turn back to the simple molecular dynamics simulation from § 4.1. This
time, we will use explicit messaging to communicate particles between chares instead of using
parameter marshalling.

Recall that we are given a (large) set of identical atoms enclosed within a simulation
volume. The atoms are not bonded together, and are assumed to have no electrostatic
interactions: we intend only to calculate the van der Waals forces between them, and thus
compute the trajectories of individual atoms. We won’t discuss the actual decomposition of
particles onto chares, but simply note that each chare is assigned a subset of particles that is
disjoint from every other chare’s subset. Furthermore, the union of these subsets is the input
set of particles.

First, we define a ParticleMsg that will hold a subset of particles to be communicated
between chares. The structure of this message is shown in Figure 5.19. It contains two
(variable-length) arrays: positions, which holds the positions of some subset of particles,
and forces, which holds the accumulated forces on the particles in that subset. Both arrays
are of type Vector3D<rtype>, where rtype denotes the type of each component of the vectors
(likely float or double). The message also has an integer field, nParticles, which holds



126 CHAPTER 5. MESSAGES

the number of particles in the subset. The .ci code that designates positions and forces

as variable-length arrays is shown in Figure 5.20.

Next, we look at how to instantiate a ParticleMsg with a requisite amount of space
for particle position and force coordinates. A chare would instantiate a ParticleMsg when
sending its particles to its neighbor in the communication ring. This happens in method
Worker::start, which is basically unchanged from Figure 4.8 of § 4.1, except for line 76,
where the particles owned by a chare are sent to its neighbor in the communication ring. In
its place, we have the code shown in Figure 5.21. Line 3 of Figure 5.21 shows the allocation of
a ParticleMsg with numParticles position vectors and numParticles force vectors. There-
after, the positions of the particles owned by the chare are copied into the message, and the
force values therein are initialized. Note that struct ParticleMsg has data members source
and iteration to replace the marshalled parameters that are received by Worker::compute

as input. Finally, the chare sends this message to the compute method to its neighbor in the
communication ring (line 8). Since Worker::compute now expects to receive a ParticleMsg,
its signature must change to: void Worker::compute(ParticleMsg *msg);

Of course, particles are communicated in other contexts as well: when a chare receives a
set of particles from one of its ring neighbors, it must “consume” them to calculate forces on
its local particles due to these received particles, and having done so, must pass them on to
its other neighbor (line 102 of Figure 4.8, in the body of Worker::compute). Moreover, once
a subset of particles has been “consumed” in this manner by half the chares in the ring, it
must be sent back to its owner, which will have accumulated forces on its local particles due
to the other half of the ring. This happens on line 97 of Figure 4.8, in Worker::compute.
We replace line 102 (see above) with the code on line 4 of Figure 5.22 and line 97 with line
9 of the same figure. Notice how we are able to reuse the message passed into the method
Worker::compute, unlike in the parameter-marshalled version of the code in Figure 4.8. In
the latter, the marshalling of the user-provided array incurs copying overhead, making the
message-based version more efficient. Finally, note that in the definitions of Worker::compute
and Worker::forces, where we would have used marshalled parameters in rexpressions in
the parameter-marshalled version of the code, we use the corresponding data members of
ParticleMsg in the varsize-message based version.

5.3 Packing Complicated Datatypes into Messages

We now address the caveat that we had made towards the end of § 5.2. That is, how do
we communicate a complicated, non-linear data structure such as a tree or a graph through
a message? In the following, we will learn about custom packed messages. Custom packed
messages can embed non-linear data structures, such that embedded data structures are
serialized only when the message crosses an address space boundary. This feature of packed
messages makes them especially efficient on multicore nodes and clusters of shared memory



5.3. PACKING COMPLICATED DATATYPES INTO MESSAGES 127

nodes.
Briefly, the custom-packing approach consists of three steps: (1) Define a packed message

type; (2) overload the pack and unpack methods of the defined message type; and (3) allocate
and use packed messages just as you would fixed-size messages. Now, let’s consider these steps
in detail, in the context of an example.

Suppose that we would like to do a Barnes-Hut style parallel simulation of N particles
interacting through gravitational forces. This simulation involves a binary tree data structure
that is distributed across chares, so that each chare holds only a portion of the distributed
tree, that is a subtree. Since gravity is a long range force, a chare requests parts of other
chares’ subtrees. It is worth noting that a request will likely not be for the entire subtree
held by a chare, but for a particular node by the chare, plus the subtree underneath it, up
to some cutoff depth. When a chare receives a request for some part of its subtree, it must
serialize that subtree into a message, and send it to the requesting chare as its response. The
requesting chare can then use the received subtree to do computations, possibly requesting
other subtrees in the process. Here, we will focus not on the particulars of the algorithm,
but on writing code to communicate subtrees via custom-packed messages.

Let MyNode be the type of each node in the binary tree. We declare custom-packed
message types to the Charm++ translator just as we did fixed-size messages. In the present
example, we would write message SubtreeMsg; in the appropriate .ci file. Next, we define
the message type, as shown in Figure 5.23. The data structure MyNode is also presented.
In addition to data fields key, centerOfMass and mass, the structure has fields isLeaf and
children which describe the local structure of the tree. For simplicity, we assume that if a
node is not a leaf (i.e. its isLeaf field is false), then both children[0] and children[1]

point to valid child nodes.
Notice the root data member, of type MyNode, that each SubtreeMsg contains. This

represents the root of the subtree that is held by the message. Field numNodes holds the
number of nodes in this subtree, which is at most maxDepth deep, where maxDepth is a
constant, readonly variable. If we were to construct a SubtreeMsg with a valid tree node
(call it n) for its root, the root would be a shallow copy of n. As a result, it would
contain children pointers that would be invalid if the SubtreeMsg were sent as-is to a
chare in a different address space. Therefore, we must tell the Charm++ system how to
perform a deep copy of the maxDepth-limited subtree under root that interests us. That
is, we must provide customized packing code for the data structure that the root field of
the SubtreeMsg represents. We do this by overriding the static method SubtreeMsg::pack.
Notice the signature of this method: it takes as input a SubtreeMsg and returns a generic
void* buffer that represents the linearized contents of the non-linear data structure present
in root. Similarly, at the receiving end, we must translate (unpack) a generic void* buffer
into a non-linear subtree that correctly recreates the binary tree structure at the sender’s
side. The code for this is provided in the second method that we must overload, namely
SubtreeMsg::unpack. This static method takes as input a void* buffer, and deserializes it



128 CHAPTER 5. MESSAGES

to obtain a SubtreeMsg whose root data member points to the maxDepth-limited subtree
that was requested by the receiving chare.

The code for SubtreeMsg::pack is shown in Figure 5.24. As mentioned before, the ob-
jective of this function is to perform a deep copy of the maxDepth-limited subtree underneath
root. To do this, we first obtain the total size, in bytes, of the tree underneath root up to a
maximum depth of maxDepth below it. This is done by the MyNode::size method (line 3),
which recursively processes nodes until it either encounters a leaf, or the depth of an internal
node relative to root exceeds maxDepth. We leave the definition of this method to the reader
as an exercise. Having obtained the size of the subtree, we ask the Charm++ system for a
buffer large enough to hold all the nodes in the subtree (line 5). Note that we use the function
CkAllocBuffer for this purpose, instead of the new operator: this is because in addition to
the buffer of size totalSize, an outgoing message must also encapsulate an envelope that
is used by the Charm++ runtime. However, CkAllocBuffer returns a pointer to the “user”
portion of the message, into which we serialize the maxDepth-limited subtree under root (line
7; we leave the definition of MyNode::serialize to the reader). Finally, having performed a
deep copy via serialize, we discard the input message, in, and return the serialized buffer
to be transmitted to the target chare, which would be located in a different address space.

Next, we must specify what actions are to be taken by the runtime at the receiving end of
a custom-packed message. We do this by overriding the static SubtreeMsg::unpack method
(Figure 5.25). As you would expect, this method takes a linear (serialized) buffer as input,
and unpacks its contents into a non-linear data structure that is usable in user code. We
begin by allocating a SubtreeMsg. At this point, the root member of the allocated msg

represents an invalid tree, since we have not unpacked the contents of the serial buffer in into
it yet. This unpacking is done by the MyNode::deserialize method (once again, we leave its
definition to the reader as an exercise). Note that the deserialize method should allocate
nodes as required and copy the contents of the serialized buffer into these nodes. After freeing
the memory occupied by the serialized buffer that this method received as input (CkFreeMsg,
line 9), we return the SubtreeMsg that will finally be passed back into user code.

Now all that remains is the actual instantiation of the custom-packed SubtreeMsg. Well,
we instantiate custom-packed messages just as we did fixed-size messages! So, a simple
SubtreeMsg *msg = new SubtreeMsg(subtreeRoot); would do. This might surprise the
reader at first, but consider that the pack/unpack methods are only called when a message
is to cross address space boundaries. The construction of a SubtreeMsg as above creates
a message with a shallow copy of the node subtreeRoot. If the message is destined for a
chare in the same address space, all the pointers in this shallow copy would be valid at the
destination too, so the pack/unpack methods are not called at all. On the other hand, if the
Charm++ determines that the recipient of the message resides in a different address space,
it performs a deep copy of the tree underneath subtreeRoot, serializing it in the process
(with the code that we supplied), and sends it to the appropriate address space. There, the
serialized information is unpacked into a usable format (deserialized), and passed back into



5.4. CONCLUSION 129

user code. A corollary of this observation is that for safety, the contents of a custom-packed
message should be accessed by chares in a read-only mode. Otherwise, chares in the same
address space may corrupt each other’s memory.

5.3.1 Serializing Data into Messages with PUP

There exists an alternative approach to communicating non-linear data structures via mes-
sages, although we do not discuss it in detail here. In § 11, we learnt about the PUP
framework, and how it is used to inform the runtime system of the dynamic structure of
complicated data structures. Basically, the PUP framework lets the programmer relate the
blueprint of an object to the runtime system, so that the object may be serialized and dese-
rialized, whether it be for communication over the network, checkpointing to the hard disk
or fault tolerance.

We can also use PUP to explicitly serialize non-linear data structures of variable size into
messages, so that they can be communicated between chares. We would do this by creating a
variable-size message that embeds a generic, char* array. Then, we would use a PUP::sizer

to find the size of the data structure to communicate. This size would be used to create a
variable-size message that is large enough to hold the linearized data structure. Next, we
would serialize the data structure into the variable-size char* array of the allocated message,
using an object of type PUP::toMem. The message would then be ready for transmission to
the target chare. At the receiving end, we would unpack the contents of the message through
an object of type PUP::fromMem.

5.4 Conclusion

Let’s close this chapter by restating the situations in which it might be appropriate to choose
messages over parameter marshalling, as well as the various types of messages, their declara-
tion and instantiation.

When should you choose messages over marshalled parameters? The performance-
conscious programmer will choose messages over marshalled parameters in two situations:
(i) Recall that marshalled parameters are available to your code only in the scope of the
entry method in which they are received. Therefore, if a chare needs to access marshalled
parameters after the entry method has finished, they must be copied into heap-allocated
buffers. This often happens in programs in which a chare receiving data may not be ready
to process the data immediately upon receipt. In this case, data received via a message can
be saved for later use by simply recording the pointer to the input message received by the
entry method. This is often more efficient than copying received marshalled parameters onto
the heap, especially if the entry method receives arrays and large, composite data structures.
Of course, you must remember to delete received messages yourself: Charm++ will not do



130 CHAPTER 5. MESSAGES

this for you, except in special cases. (ii) You should also use a message instead of marshalled
parameters if your entry method exhibits the following pattern: it receives data of a certain
size, possibly altering it in the body of the entry method, and sends it to another chare,
such that the size of sent data is the same as that of the received data. In such a case, the
contents of an incoming message could be altered, and the message reused in the invocation
of an entry method on some other chare. For instance, the ring communication example from
§ 3.2 would benefit from using messages: instead of accepting a number of marshalled int

type parameters, the Ring::doSomething method could accept a message, alter its contents
to reflect the number of chare array elements yet to receive the message, and send the same
message to the next chare in the ring. Note that when user code passes a message to the
Charm++ runtime system (for instance, through an entry method invocation) the memory
associated with the is no longer available to the user. In particular, attempts to dereference
a pointer to a message object that has already been used in an entry method invocation,
will yield incorrect results and possibly cause your program to crash. Therefore, a received
message can only be reused once at the receiving end, i.e. it can only be passed as input to a
single entry method invocation by the chare that received it, although that invocation may
be a point-to-point communication, or a broadcast/multicast. However, a received message
cannot be used in multiple entry method invocations at the receiving end. For instance, if you
were writing a Charm++ program in which the contents of a message were being passed down
the nodes of a spanning tree constructed from an array of chares, the code that forwards
a message received by an internal node could send the received message to only one of the
chare’s spanning tree children; for all other children, new messages would have to be allocated.

What are the various types of message in Charm++? There are three types of message,
namely fixed-size, variable-size and packed. Fixed-size messages (§ 5.1) have constant size, and
usually encapsulate several data members, each of which is of fixed size. Therefore, the size
of the message can be obtained by applying the C++ sizeof operator to the message type.
Note that fixed-size messages can include arrays as members too, but these arrays cannot
be allocated dynamically. To allow chares to communicate variable amounts of data, there
are variable-size messages (§ 5.2), which may encapsulate dynamically allocated memory of
arbitrary size and type. Finally, packed messages are used to communicate (possibly non-
linear) data structures between chares in an efficient manner. Packed messages (§ 5.3) incur
serialization overhead only when the encapsulated data is to be communicated across address
spaces.

How are messages of various types declared? Before defining a message type, you
must inform the Charm++ translator that a certain user-defined data type is to be considered
as a message that can be communicated between chares. For a fixed-size message of type
MyMessageType, this is done by including a statement of the form message MyMessageType;

in the appropriate .ci file of the program. See example .ci code in Figure 5.1 for a simple



5.4. CONCLUSION 131

ping-pong program. In declaring a variable-size message of type MyMessageType we must tell
the Charm++ translator about all the variable-length arrays that are embedded within the
message. Code showing the form of such declarations is given in Figures 5.16 and 5.20. For
custom-packed messages, we require the same .ci code as we did for fixed-size messages (see
§ 5.3).

How are message types defined? Message types must inherit from their correspond-
ing (translator-generated) CBase classes. For example, a message of type MyMsgType must
inherit from CBase MyMsgType. The variable-length arrays encapsulated by a variable-size
message are represented by pointers of the corresponding types. For instance, see Figures 5.17
and 5.19. For a custom-packed message, which is meant to embed user-defined, non-linear
data structures, we place shallow copies of the data structures in the message. In addition,
we must override the static pack and unpack methods of the message type, as shown in § 5.3
(Figures 5.24 and 5.25.)

How are messages instantiated? This too depends on the type of the message: fixed-
size and custom-packed messages are instantiated in similar ways, through the regular new

operator of the corresponding message type (See Figure 5.12 and § 5.3 for code showing the
allocation of fixed-size and custom-packed messages, respectively.) To instantiate variable-
size messages, we must use overloaded versions of the new operator. The number of arguments
to the new operator of a variable-size message depends on the number of variable-length typed
arrays that it encapsulates. Each argument gives the size of the corresponding array, as shown
in Figures 5.18 and 5.21.



132 CHAPTER 5. MESSAGES

1 void GSWorker::updateTopRow(){

2 double err;

3 for(int j = 0; j < TILE_SIZE; j++){

4 err = AVG(myDomain[AT(TOP_ROW,myTile,j)],

5 myDomain[LEFT(TOP_ROW,myTile,j)],

6 myBoundaries[TOP_BDRY]->data[j],

7 myDomain[RIGHT(TOP_ROW,myTile,j)],

8 myDomain[BELOW(TOP_ROW,myTile,j)]

9 );

10 if(myError < err) myError = err;

11 }

12 }

13

14 void GSWorker::updateBottomRow(){

15 double err;

16 for(int j = 0; j < TILE_SIZE; j++){

17 err = AVG(myDomain[AT(BOTTOM_ROW,myTile,j)],

18 myDomain[LEFT(BOTTOM_ROW,myTile,j)],

19 myDomain[ABOVE(BOTTOM_ROW,myTile,j)],

20 myDomain[RIGHT(BOTTOM_ROW,myTile,j)],

21 myBoundaries[BOTTOM_BDRY]->data[j]

22 );

23 if(myError < err) myError = err;

24 }

25 }

Figure 5.14:



5.4. CONCLUSION 133

1 void Main::recvError(double err){

2 double globalError = err;

3 delete m;

4 double delta = fabs(previousError-globalError);

5 if(delta/previousError > errorTolerance){

6 workerProxy.sendOldBoundary();

7 previousError = globalError;

8 }

9 else CkExit();

10 }

Figure 5.15:

1 message MyVarSizeMsg {

2 MyFirstStruct firstArray[];

3 MySecondStruct secondArray[];

4 };

Figure 5.16:

1 class MyVarSizeMsg : public CMessage_MyVarSizeMsg {

2 private:

3 MyFirstStruct *firstArray;

4 MySecondStruct *secondArray;

5 MyThirdStruct anotherField;

6

7 // other member fields and methods ...

8 };

Figure 5.17:

1 MyVarSizeMsg *msg = new (nElementsFirst,nElementsSecond) MyVarSizeMsg;

Figure 5.18:



134 CHAPTER 5. MESSAGES

1 struct ParticleMsg : public CMessage_ParticleMsg {

2 Vector3D<rtype> *positions;

3 Vector3D<rtype> *forces;

4 int nParticles;

5

6 int source;

7 int iteration;

8

9 ParticleMsg(int src, int iter, int np) :

10 source(src), iteration(iter), nParticles(np) {}

11 };

Figure 5.19:

1 message ParticleMsg {

2 Vector3D<rtype> positions[];

3 Vector3D<rtype> forces[];

4 };

Figure 5.20:

1 // in Worker::start(), send own particles to neighbor

2 ParticleMsg *msg;

3 msg = new (numParticles,numParticles) ParticleMsg(thisIndex,iteration);

4 for(int i = 0; i < numParticles; i++){

5 msg->positions[i] = locals[i].position;

6 msg->forces[i] = Vector3D<rtype>(0.0);

7 }

8 thisProxy[next].compute(msg);

9

Figure 5.21:



5.4. CONCLUSION 135

1 // in Worker::compute(),

2 // when done calculating forces on local particles due

3 // to received particles, forward them to ring neighbor...

4 thisProxy[next].compute(msg);

5

6 // ...or, if accumulated forces are to be returned to the

7 // source chare, i.e. the owner of the particles, send

8 // them back:

9 thisProxy[msg->source].forces(msg);

Figure 5.22:

1 struct MyNode {

2 int key;

3 Vector3D<float> centerOfMass;

4 float mass;

5 bool isLeaf;

6 MyNode *children[2];

7

8 size_t size(int depthCutoff);

9 void serialize(MyNode *into, int depthCutoff);

10 void deserialize(MyNode *from);

11

12 };

13

14 struct SubtreeMsg : public CMessage_SubtreeMsg {

15 MyNode root;

16

17 SubtreeMsg() {}

18 SubtreeMsg(MyNode *root_) : root(*root_) {}

19

20 static void *pack(SubtreeMsg *in);

21 static SubtreeMsg *unpack(void *in);

22 static size_t getStaticSize();

23 };

Figure 5.23:



136 CHAPTER 5. MESSAGES

1 void *SubtreeMsg::pack(SubTreeMsg *in){

2 // get total serialized size of subtree under ‘root’

3 size_t totalSize = in->root.size(maxDepth);

4 // allocate a buffer large enough to hold serialized tree

5 char *buf = (char *)CkAllocBuffer(in,totalSize);

6 // serialize tree into allocated buffer

7 in->root.serialize((MyNode*)buf,maxDepth);

8 // we’ve done a deep copy of the data pointed to

9 // by the input msg ‘in’; don’t need ‘in’ anymore

10 delete in;

11 return (void*) buf;

12 }

Figure 5.24:

1 SubtreeMsg *SubtreeMsg::unpack(void *in_){

2 char *in = (char *)in_;

3 // allocate a msg of type SubtreeMsg

4 SubtreeMsg *msg = (SubtreeMsg *)CkAllocBuffer(in,sizeof(SubtreeMsg));

5 // construct non-linear data structure from serialized buffer ‘in’

6 msg->root.deserialize((MyNode*)in);

7 // we’ve recreated the tree in the serial buffer

8 // ‘in_’; don’t need ‘in_’ anymore

9 CkFreeMsg(in_);

10 return msg;

11 }

Figure 5.25:


