Migratable Objects and Task-Based Parallel
Programming with Charm++

Charm Tutorial



Challenges in Parallel Programming

* Applications are getting more sophisticated

— Adaptive refinement

— Multi-scale, multi-module, multi-physics

— E.g. load imbalance emerges as a huge problem for some apps
* Exacerbated by strong scaling needs from apps

— Strong scaling: run an application with same input data on more processors,
and get better speedups

— Weak scaling: larger datasets on more processors in the same time
* Hardware variability

— Static/dynamic

— Heterogeneity: processor types, process variation, etc.

— Power/Temperature/Energy

‘IEI

I-<\/~‘ a
| M

— Component failure

Charm Tutorial

PPL

UToc




Our View

* To deal with these challenges, we must seek:
— Not full automation
— Not full burden on app-developers
— But: a good division of labor between the system and app developers
* Programmer: what to do in parallel, System: where,when
* Develop language driven by needs of real applications

— Avoid “platonic” pursuit of “beautiful” ideas
— Co-developed with NAMD, ChaNGa, OpenAtom,..

* Pragmatic focus
— Ground-up development, portability,
— accessibility for a broad user base

(L
K~ latn

.-L/W*>

Bl =

Charm Tutorial




What is Charm++7?

* Charm++ is a generalized approach to writing parallel programs
— An alternative to the likes of MPI, UPC, GA etc.
— But not to sequential languages such as C, C++, and Fortran

* Represents:
— The style of writing parallel programs
— The runtime system
— And the entire ecosystem that surrounds it
* Three design principles:
— Overdecomposition, Migratability, Asynchrony

SEnE
| —/& PPL

' Charm Tutorial 4 Uiluc
Bl =




Overdecomposition

* Decompose the work units & data units into many more pieces
than execution units

— Cores/Nodes/...
* Not so hard: we do decomposition anyway

—

—
—

Charm Tutorial

|
1|

i

5

PPL

U10(



Migratabillity

* Allow these work and data units to be migratable at runtime

— I.e. the programmer or runtime can move them

* Consequences for the application developer

— Communication must now be addressed to logical units with global names,
not to physical processors

— But this is a good thing

* Consequences for RTS

aEas
il

— Must keep track of where each unit is
— Naming and location management

Charm Tutorial 6

PPL

UToc




Asynchrony: Message-Driven Execution

* With over-decomposition and migratability:
— You have multiple units on each processor
— They address each other via logical names

* Need for scheduling:
— What sequence should the work units execute in”?

— One answer: let the programmer sequence them
* Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:
* Let the work-unit that happens to have data (“message”) available for it execute next
* Let the RTS select among ready work units
* Programmer should not specify what executes next, but can influence it via priorities

aEas
il

Charm Tutorial 7

PPL

UToc




MR

FI

T L%LA“’

EE e
M |
\

NN

Key Ideas in our parallel programming model

Let the programmer decide what to do in parallel
— Express decomposition, interactions

Let the system decide where and when

How: virtualize the notion of a processor
— So as to automate resource management and associated functionalities

The migratable objects programming model

— Charm++ is one of the (first/foundational) programming system within this
model

PPL

Charm Tutorial 8 vioc




Realization of This Model in Charm++

* Overdecomposed entities: chares
— Chares are C++ objects

— With methods designated as “entry” methods
* Which can be invoked asynchronously by remote chares

— Chares are organized into indexed collections
* Each collection may have its own indexing scheme
- 1D, ...,6D
— Sparse
— Bitvector or string as an index
— Chares communicate via asynchronous method invocations
* A[1].foo(..);
— A is the name of a collection, 1 is the index of the particular chare.

SEnE
| —/& PPL

Charm Tutorial 9 Uiluc




* A Charm++ computation consists of multiple
collections of globally visible objects
* Each collection is individually indexed

) O L

Processor O Processor 1

Processor 2 Processor 3

-a
HE
O
O

O
O

UI10C

1

EE BBE
M |
|




Objects are assigned to processors by the Processor 1

runtime system Processor O
* Programmer does not need to know where an
object is located
. . EENEENEERNENESE EEEEEEEERNENNNE
Scheduling on each processors is under the Message Quete Message Queue
control of a user-space message-driven
scheduler

Example: an object on 0 wants to invoke a

method on object A[23]
The Runtime System packages the method
invocation into a message
* Locates where the target object is
* Sends the message to the queue on Processor 2
destination processor

* Scheduler invokes the method on the target

object EEEEEEEEEEEEEEE

Processor 3 0

Scheduler

ENENEEEEENEENNE PPL

Message Queue

Message Queue

UToc




The runtime system knows which
processors are overloaded, which objects
are computationally heavy, which objects

talk to which Processor O Processor 1

Scheduler Scheduler

Message Queue Message Queue

Processor 3

Scheduler

ENEEEEEEENENENE PPL

Message Queue

Processor 2

Scheduler

Message Queue

UI10C

BN W

I
"%’F
| I (M



Processor O Processor 1

Using this information, it migrates objects to

rebalance load and optimize communication EEEEEEEEEEEEEEE EENEEENEEEENEEE

Message Queue Message Queue

Processor 3

Scheduler

ENEEEEEEENENENE PPL

Message Queue

Processor 2

Scheduler

Message Queue

UI10C

18 1
I'm



Capabilities

Demo on raspberry pi cluster:

* Capabilities

EEA.
e

_—"" https://www.hpccharm.com/demo

Dynamic load balanCing/'
Fault Tolerance

Elasticity:

* change the set of nodes allocated to a job
Adaptive overlap of communication and

computation®

Communication optimizations
Out-of-core execution

Energy optimizations™
Asynchronous GPGPU interface

Charm Tutorial

Programming Systems
— Charm++

— Adaptive MPI

— Charm4Py

— Charades

— Experimental DSLs:
* MSA, Charisma, ParFUM, ...
Ongoing work on DSLs

— Ergoline, EIR: DSL framework with
compiler support
* Justin Szaday

— Python-based DSLs: libraries

— Enthusiastic students, unfunded
projects

14



https://www.hpccharm.com/demo

Empowering the RTS

Adaptive
Runtime System

Introspection Adaptivity

Asynchrony Overdecomposition Migratability

* The Adaptive RTS can:
— Dynamically balance loads
— Optimize communication:
* Spread over time, async collectives
— Automatic latency tolerance
— Prefetch data with almost perfect predictability PPL

Charm Tutorial 15 UI1o(




Charm++ and CSE Applications

Well-known Biophysics
Molecular Simulation App

Gordon Bell Award, 2002

Nano—MateriaIs

’—ﬁ

__ 7~ Other >
Enabllng CS technology of parallel objects and intelligent runtlme
systems has led to several CSE collaborative applications

- : Simu atlon
Computational (Space-Tlme

Astronomy Meshing 4
| ——

PPL

Charm Tutorial 16 UI1o(



Summary: What is Charm++7

* Charm++ is a way of parallel programming

* |t is based on:
— Objects
— Overdecomposition
— Asynchrony

* Asynchronous method invocations
— Migratability
— Adaptive runtime system

* It has been co-developed synergistically with multiple CSE
applications

PPL

Charm Tutorial 17 vioc




	Migratable Objects and Task-Based Parallel Programming with Cha
	Challenges in Parallel Programming
	Our View
	What is Charm++?
	Overdecomposition
	Migratability
	Asynchrony: Message-Driven Execution
	Key Ideas in our parallel programming model
	Realization of This Model in Charm++
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Capabilities
	Empowering the RTS
	Charm++ and CSE Applications
	Summary: What is Charm++?

