
Migratable Objects and Task-Based Parallel 
Programming with Charm++
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Challenges in Parallel Programming
• Applications are getting more sophisticated

– Adaptive refinement
– Multi-scale, multi-module, multi-physics
– E.g. load imbalance emerges as a huge problem for some apps

• Exacerbated by strong scaling needs from apps
– Strong scaling: run an application with same input data on more processors, 

and get better speedups
– Weak scaling: larger datasets on more processors in the same time

• Hardware variability
– Static/dynamic
– Heterogeneity: processor types, process variation, etc.
– Power/Temperature/Energy
– Component failure
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Our View
• To deal with these challenges, we must seek:
– Not full automation 
– Not full burden on app-developers
– But: a good division of labor between the system and app developers

• Programmer: what to do in parallel, System: where,when 

• Develop language driven by needs of real applications
– Avoid “platonic” pursuit of “beautiful” ideas
– Co-developed with NAMD, ChaNGa, OpenAtom,..

• Pragmatic focus
– Ground-up development, portability, 
– accessibility for a broad user base
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What is Charm++?
• Charm++ is a generalized approach to writing parallel programs
– An alternative to the likes of MPI, UPC, GA etc.
– But not to sequential languages such as C, C++, and Fortran

• Represents:
– The style of writing parallel programs
– The runtime system
– And the entire ecosystem that surrounds it

• Three design principles: 
– Overdecomposition, Migratability, Asynchrony
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Overdecomposition
• Decompose the work units & data units into many more pieces 

than execution units
– Cores/Nodes/…

• Not so hard: we do decomposition anyway
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Migratability
• Allow these work and data units to be migratable at runtime
– i.e. the programmer or runtime can move them

• Consequences for the application developer
– Communication must now be addressed to logical units with global names, 

not to physical processors
– But this is a good thing

• Consequences for RTS
– Must keep track of where each unit is
– Naming and location management
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Asynchrony: Message-Driven Execution
• With over-decomposition and migratability:
– You have multiple units on each processor
– They address each other via logical names

• Need for scheduling:
– What sequence should the work units execute in?
– One answer: let the programmer sequence them

• Seen in current codes, e.g. some AMR frameworks
– Message-driven execution: 

• Let the work-unit that happens to have data (“message”) available for it execute next
• Let the RTS select among ready work units
• Programmer should not specify what executes next, but can influence it via priorities
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Key Ideas in our parallel programming model
• Let the programmer decide what to do in parallel
– Express decomposition, interactions

• Let the system decide where and when
• How: virtualize the notion of a processor
– So as to automate resource management and associated functionalities

• The migratable objects programming model
– Charm++ is one of the (first/foundational) programming system within this 

model
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Realization of This Model in Charm++
• Overdecomposed entities: chares
– Chares are C++ objects 
– With methods designated as “entry” methods

• Which can be invoked asynchronously by remote chares
– Chares are organized into indexed collections

• Each collection may have its own indexing scheme
– 1D, ..., 6D 
– Sparse
– Bitvector or string as an index

– Chares communicate via asynchronous method invocations
• A[i].foo(…);  

– A is the name of a collection, i is the index of the particular chare.
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• A Charm++ computation consists of multiple 
collections of globally visible objects

• Each collection is individually indexed
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• Objects are assigned to processors by the 
runtime system
• Programmer does not need to know where an 

object is located

• A Charm++ computation consists of multiple 
collections of globally visible objects

• Each collection is individually indexed

• Scheduling on each processors is under the 
control of a user-space message-driven 
scheduler

• Example: an object on 0 wants to invoke a 
method on object A[23]
• The Runtime System packages the method 

invocation into a message
• Locates where the target object is 
• Sends the message to the queue on 

destination processor
• Scheduler invokes the method on the target 

object
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The runtime system knows which 
processors are overloaded, which objects 
are computationally heavy, which objects 
talk to which
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Using this information, it migrates objects to 
rebalance load and optimize communication
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Capabilities
• Capabilities

– Dynamic load balancing
– Fault Tolerance
– Elasticity: 

• change the set of nodes allocated to a job
– Adaptive overlap of communication and 

computation*
– Communication optimizations
– Out-of-core execution
– Energy optimizations*
– Asynchronous GPGPU interface
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• Programming Systems
– Charm++
– Adaptive MPI
– Charm4Py
– Charades
– Experimental DSLs:

• MSA, Charisma, ParFUM, …

• Ongoing work on DSLs
– Ergoline, EIR:  DSL framework with 

compiler support 
• Justin Szaday

– Python-based DSLs: libraries
– Enthusiastic students, unfunded 

projects

Demo on raspberry pi cluster:
https://www.hpccharm.com/demo
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Empowering the RTS

• The Adaptive RTS can:
– Dynamically balance loads
– Optimize communication:

• Spread over time, async collectives
– Automatic latency tolerance
– Prefetch data with almost perfect predictability
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Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity
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Charm++ and CSE Applications

Enabling CS technology of parallel objects and intelligent runtime 
systems has led to several CSE collaborative applications

Synergy

Well-known Biophysics 
Molecular Simulation App 

Gordon Bell Award, 2002

Computational 
Astronomy

Nano-Materials
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Summary: What is Charm++?
• Charm++ is a way of parallel programming
• It is based on:
– Objects
– Overdecomposition
– Asynchrony 

• Asynchronous method invocations
– Migratability
– Adaptive runtime system

• It has been co-developed synergistically with multiple CSE 
applications
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