
Migratable Objects and Task-Based Parallel
Programming with Charm++

1Charm Tutorial

2

Challenges in Parallel Programming
• Applications are getting more sophisticated

– Adaptive refinement
– Multi-scale, multi-module, multi-physics
– E.g. load imbalance emerges as a huge problem for some apps

• Exacerbated by strong scaling needs from apps
– Strong scaling: run an application with same input data on more processors,

and get better speedups
– Weak scaling: larger datasets on more processors in the same time

• Hardware variability
– Static/dynamic
– Heterogeneity: processor types, process variation, etc.
– Power/Temperature/Energy
– Component failure

Charm Tutorial

Our View
• To deal with these challenges, we must seek:
– Not full automation
– Not full burden on app-developers
– But: a good division of labor between the system and app developers

• Programmer: what to do in parallel, System: where,when

• Develop language driven by needs of real applications
– Avoid “platonic” pursuit of “beautiful” ideas
– Co-developed with NAMD, ChaNGa, OpenAtom,..

• Pragmatic focus
– Ground-up development, portability,
– accessibility for a broad user base

3Charm Tutorial

What is Charm++?
• Charm++ is a generalized approach to writing parallel programs
– An alternative to the likes of MPI, UPC, GA etc.
– But not to sequential languages such as C, C++, and Fortran

• Represents:
– The style of writing parallel programs
– The runtime system
– And the entire ecosystem that surrounds it

• Three design principles:
– Overdecomposition, Migratability, Asynchrony

4Charm Tutorial

Overdecomposition
• Decompose the work units & data units into many more pieces

than execution units
– Cores/Nodes/…

• Not so hard: we do decomposition anyway

5Charm Tutorial

Migratability
• Allow these work and data units to be migratable at runtime
– i.e. the programmer or runtime can move them

• Consequences for the application developer
– Communication must now be addressed to logical units with global names,

not to physical processors
– But this is a good thing

• Consequences for RTS
– Must keep track of where each unit is
– Naming and location management

6Charm Tutorial

7

Asynchrony: Message-Driven Execution
• With over-decomposition and migratability:
– You have multiple units on each processor
– They address each other via logical names

• Need for scheduling:
– What sequence should the work units execute in?
– One answer: let the programmer sequence them

• Seen in current codes, e.g. some AMR frameworks
– Message-driven execution:

• Let the work-unit that happens to have data (“message”) available for it execute next
• Let the RTS select among ready work units
• Programmer should not specify what executes next, but can influence it via priorities

Charm Tutorial

Key Ideas in our parallel programming model
• Let the programmer decide what to do in parallel
– Express decomposition, interactions

• Let the system decide where and when
• How: virtualize the notion of a processor
– So as to automate resource management and associated functionalities

• The migratable objects programming model
– Charm++ is one of the (first/foundational) programming system within this

model

8Charm Tutorial

9

Realization of This Model in Charm++
• Overdecomposed entities: chares
– Chares are C++ objects
– With methods designated as “entry” methods

• Which can be invoked asynchronously by remote chares
– Chares are organized into indexed collections

• Each collection may have its own indexing scheme
– 1D, ..., 6D
– Sparse
– Bitvector or string as an index

– Chares communicate via asynchronous method invocations
• A[i].foo(…);

– A is the name of a collection, i is the index of the particular chare.

Charm Tutorial

Processor 3Processor 2

Processor 1Processor 0

10

• A Charm++ computation consists of multiple
collections of globally visible objects

• Each collection is individually indexed

Processor 3Processor 2

Processor 1Processor 0

11

• Objects are assigned to processors by the
runtime system
• Programmer does not need to know where an

object is located

• A Charm++ computation consists of multiple
collections of globally visible objects

• Each collection is individually indexed

• Scheduling on each processors is under the
control of a user-space message-driven
scheduler

• Example: an object on 0 wants to invoke a
method on object A[23]
• The Runtime System packages the method

invocation into a message
• Locates where the target object is
• Sends the message to the queue on

destination processor
• Scheduler invokes the method on the target

object

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Processor 2

Processor 1Processor 0

Processor 3

12

The runtime system knows which
processors are overloaded, which objects
are computationally heavy, which objects
talk to which

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Processor 2

Processor 1Processor 0

Processor 3

13

Using this information, it migrates objects to
rebalance load and optimize communication

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Message Queue

Scheduler

Capabilities
• Capabilities

– Dynamic load balancing
– Fault Tolerance
– Elasticity:

• change the set of nodes allocated to a job
– Adaptive overlap of communication and

computation*
– Communication optimizations
– Out-of-core execution
– Energy optimizations*
– Asynchronous GPGPU interface

14

• Programming Systems
– Charm++
– Adaptive MPI
– Charm4Py
– Charades
– Experimental DSLs:

• MSA, Charisma, ParFUM, …

• Ongoing work on DSLs
– Ergoline, EIR: DSL framework with

compiler support
• Justin Szaday

– Python-based DSLs: libraries
– Enthusiastic students, unfunded

projects

Demo on raspberry pi cluster:
https://www.hpccharm.com/demo

Charm Tutorial

https://www.hpccharm.com/demo

Empowering the RTS

• The Adaptive RTS can:
– Dynamically balance loads
– Optimize communication:

• Spread over time, async collectives
– Automatic latency tolerance
– Prefetch data with almost perfect predictability

15

Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity

Charm Tutorial

16

Charm++ and CSE Applications

Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

Synergy

Well-known Biophysics
Molecular Simulation App

Gordon Bell Award, 2002

Computational
Astronomy

Nano-Materials

Charm Tutorial

Summary: What is Charm++?
• Charm++ is a way of parallel programming
• It is based on:
– Objects
– Overdecomposition
– Asynchrony

• Asynchronous method invocations
– Migratability
– Adaptive runtime system

• It has been co-developed synergistically with multiple CSE
applications

17Charm Tutorial

	Migratable Objects and Task-Based Parallel Programming with Cha
	Challenges in Parallel Programming
	Our View
	What is Charm++?
	Overdecomposition
	Migratability
	Asynchrony: Message-Driven Execution
	Key Ideas in our parallel programming model
	Realization of This Model in Charm++
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Capabilities
	Empowering the RTS
	Charm++ and CSE Applications
	Summary: What is Charm++?

