
Message-driven execution

Migratability

Introspective and adaptive 
runtime system

Scalable tools Automatic overlap of 
communication and computation 

Emulation for 
performance prediction

Fault tolerance

Dynamic load balancing (topology-
aware, scalable)

Temperature/power/energy 
optimizations

Charm++ Benefits
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Perfect prefetch

Compositionality

Overdecomposition
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Locality and Prefetch
• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code use
– Much stronger than principle of locality

• Can use to scale memory wall:
• Prefetching of needed data: 

– Into scratchpad memories, for example

Processor 1

Scheduler

Message Queue
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Impact on Communication
• Current use of communication network:

– Compute-communicate cycles in typical MPI apps
– The network is used for a fraction of time

• And is on the critical path

• Current communication networks are over-engineered by 
necessity

P1

P2

BSP based application
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Impact on Communication
• With overdecomposition:

– Communication is spread over an iteration
– Adaptive overlap of communication and computation

P1

P2

Overdecomposition enables overlap
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Decomposition Challenges
• Current method is to decompose to processors

– This has many problems
– Deciding which processor does what work in detail is difficult at large scale

• Decomposition should be independent of number of processors – 
enabled by object based decomposition

• Let runtime system (RTS) assign objects to available resources 
adaptively
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Decomposition Independent of numCores
• Rocket simulation example under traditional MPI

• With migratable-objects: 

– Benefit: load balance, communication optimizations, modularity
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Compositionality
• It is important to support parallel composition

– For multi-module, multi-physics, multi-paradigm applications…
• What I mean by parallel composition

– B || C where B, C are independently developed modules
– B is parallel module by itself, and so is C
– Programmers who wrote B were unaware of C 
– No dependency between B and C

• This is not supported well by MPI
– Developers support it by breaking abstraction boundaries

• E.g., wildcard recvs in module A to process messages for module B
– Nor by OpenMP implementations
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Without message-driven execution (and 
virtualization), you get either:

Space-division

Time

B

C
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OR: Sequentialization

Time

B

C
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Recall: different modules, written in different 
languages/paradigms, can overlap in time and on 
processors, without programmer having to worry about this 
explicitly

Parallel Composition: A1; (B || C ); A2
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