
Message-driven execution

Migratability

Introspective and adaptive
runtime system

Scalable tools Automatic overlap of
communication and computation

Emulation for
performance prediction

Fault tolerance

Dynamic load balancing (topology-
aware, scalable)

Temperature/power/energy
optimizations

Charm++ Benefits

1

Perfect prefetch

Compositionality

Overdecomposition

Charm Tutorial

2

Locality and Prefetch
• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code use
– Much stronger than principle of locality

• Can use to scale memory wall:
• Prefetching of needed data:

– Into scratchpad memories, for example

Processor 1

Scheduler

Message Queue

Charm Tutorial

3

Impact on Communication
• Current use of communication network:

– Compute-communicate cycles in typical MPI apps
– The network is used for a fraction of time

• And is on the critical path

• Current communication networks are over-engineered by
necessity

P1

P2

BSP based application

Charm Tutorial

4

Impact on Communication
• With overdecomposition:

– Communication is spread over an iteration
– Adaptive overlap of communication and computation

P1

P2

Overdecomposition enables overlap

Charm Tutorial

5

Decomposition Challenges
• Current method is to decompose to processors

– This has many problems
– Deciding which processor does what work in detail is difficult at large scale

• Decomposition should be independent of number of processors –
enabled by object based decomposition

• Let runtime system (RTS) assign objects to available resources
adaptively

Charm Tutorial

6

Decomposition Independent of numCores
• Rocket simulation example under traditional MPI

• With migratable-objects:

– Benefit: load balance, communication optimizations, modularity

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

Charm Tutorial

7

Compositionality
• It is important to support parallel composition

– For multi-module, multi-physics, multi-paradigm applications…
• What I mean by parallel composition

– B || C where B, C are independently developed modules
– B is parallel module by itself, and so is C
– Programmers who wrote B were unaware of C
– No dependency between B and C

• This is not supported well by MPI
– Developers support it by breaking abstraction boundaries

• E.g., wildcard recvs in module A to process messages for module B
– Nor by OpenMP implementations

Charm Tutorial

8

Without message-driven execution (and
virtualization), you get either:

Space-division

Time

B

C

Charm Tutorial

9

OR: Sequentialization

Time

B

C

Charm Tutorial

10

Recall: different modules, written in different
languages/paradigms, can overlap in time and on
processors, without programmer having to worry about this
explicitly

Parallel Composition: A1; (B || C); A2

	Charm++ Benefits
	Locality and Prefetch
	Impact on Communication
	Impact on Communication (2)
	Decomposition Challenges
	Decomposition Independent of numCores
	Compositionality
	Slide 8
	Slide 9
	Slide 10

