Charm Interface: Modules

* Charm++ programs are organized as a collection of modules
* Each module has one or more chares
* The module that contains the mainchare is declared as the mainmodule

* Each module, when compiled, generates two files: MyModule.decl.h and
MyModule.def.h

.Ci file
[main]module MyModule {

//... chare definitions ...
}i

Charm Tutorial

1

PPL

U10(



Charm Interface: Chares

* Chares are parallel objects that are managed by the RTS

* Each chare has a set of entry methods, which are asynchronous methods that
may be invoked remotely

* The following code, when compiled, generates a C++ class
CBase MyChare that encapsulates the RTS object

* This generated class is extended and implemented in the .cpp file
* .cifile

[main]chare MyChare {
//... entry method definitions ...

¥

* .cpp file

class MyChare : public CBase MyChare {
//... entry method implementations ...

b PPL

Charm Tutorial 2 UI1o(




Charm Interface: Entry Methods

Entry methods are C++ methods that can be remotely and
asynchronously invoked by another chare

.ci file

entry MyChare(); /* constructor entry method x/
entry void foo();
entry void bar(int param);

.cpp file

MyChare: :MyChare() { /*... constructor code ...x/ }
MyChare::foo() { /*... code to execute ...x/ }
MyChare::bar(int param) { /x... code to execute ...x/ }

This necessitates changing both (or all: .ci, .h, .cpp) files if you add/remove/change a
parameter to an entry method, which is a common pitfall

Charm Tutorial



F ]
M

EE BE
, ]
1§

Charm Interface: mainchare

Execution begins with the mainchare’s constructor

The mainchare’s constructor takes a pointer to system-defined
class CkArgMsg

CkArgMsg contains argv and argc
The mainchare will typically creates some additional chares

There can be more than one chare.. They all will start, in
unspecified order, on one of the PEs.

But it is customary to have only one main chare in a
program.

Charm Tutorial

PPL

UI10C




Creating a Chare

* A chare declared as chare MyChare {...}; can be instantiated by
the following call:

CProxy MyChare::ckNew(..constructor arguments..);

* To communicate with this class in the future, a proxy to it must be
retained

CProxy MyChare proxy = CProxy MyChare::ckNew(argl);

PPL

Charm Tutorial 5 UI1o(




Chare Proxies

* A chare’s own proxy can be obtained through a special variable thisProxy
Chare proxies can also be passed so chares can learn about others

In this snippet, MyChare learns about a chare instance main, and then
Invokes a method on it:

 _cifile

. _gBqueyoid foobar(CProxy Main main);

MyChare: :foobar(CProxy Main main) {
main.foo();

}

PPL

Charm Tutorial 6 UI1o(




Hello World with Chares

hello.ci hello.cpp
mainmodule hello { #include <stdio.h>
mainchare Main { #include “hello.decl.h”
entry Main(CkArgMsg *m);
}; class Main : public CBase Main {
chare Singleton { public: Main(CkArgMsgx m) {
entry Singleton(); CProxy Singleton: :ckNew();
s b
s b
class Singleton : public CBase Singleton
{
public: Singleton() {
ckout << “Hello World!” << endl;
CKExit();
¥
;i“ Tt “hetto.def.h” BEL

m Tutorial ] ] 7 UI1o(




Charm Termination

* There is a special system call CKEx1t () that terminates the
parallel execution on all processors (but it is called on one
processor) and performs the requisite cleanup

* The traditional ex1t () is insufficient because it only terminates
one process, not the entire parallel job (and will cause a hang)

* CkEx1it () should be called when you can safely terminate the
application (you may want to synchronize before calling this)

() O O
o 9 g O D 8 g0 80
—_——

8

PPL

U10(



Chare Creation Example: .ci file

mainmodule MyModule {
mainchare Main {
entry Main(CkArgMsg =m);
b

chare Simple {
entry Simple(int x, double y);

Charm Tutorial



Chare Creation Example: .cpp file

#include “MyModule.decl.h”

class Main : public CBase Main {
public: Main(CkArgMsgx m) {
ckout << “Hello World!” << endl;
CProxy Simple::ckNew(1l2, 3.1415);

} )

class Simple : public CBase Simple {

public: Simple(int x, double y) {
ckout << “Radius:” << x << “, Area:” << y*x*x << endl;
CKExit();

} )

#include “MyModule.def.h”

Charm Tutorial



	Charm Interface: Modules
	Charm Interface: Chares
	Charm Interface: Entry Methods
	Charm Interface: mainchare
	Creating a Chare
	Chare Proxies
	Hello World with Chares
	Charm Termination
	Chare Creation Example: .ci file
	Chare Creation Example: .cpp file

