Chares Are Reactive

* The way we described Charm++ so far, a chare is a reactive entity:
— If it gets this method invocation, it does this action,
— If it gets that method invocation then it does that action
— But what does it do?
— In typical programs, chares have a life-cycle

* How to express the life-cycle of a chare in code?

— Only when it exists
* i.e. some chares may be truly reactive, and the programmer does not know the life cycle

— But when it exists, its form is:
* Computations depend on remote method invocations, and completion of other local
computations
* A DAG (Directed Acyclic Graph)!

aEas
il

Charm++ Tutorial 1

PPL

UToc

Fibonacci Example

mainmodule fib {
mainchare Main {
entry Main(CkArgMsgx* m);

¥
chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib
parent);
entry void result(int value);
¥

b

PPL

Charm++ Tutorial 2 UDIU(

Fibonaccl Example

class Main : public CBase Main {
public:
Main(CkArgMsgx m) {
CProxy Fib::ckNew(atoi(m—>argv[1l]), true, CProxy Fib());

}i

class Fib : public CBase Fib {
public:
CProxy Fib parent; bool isRoot; int total, count;
Fib(int n, bool isRoot , CProxy Fib parent)
: parent(parent), isRoot(isRoot), total(0), count(2) {
if (n < THRESHOLD) {respond(seqFib(n)); }
else { CProxy Fib::ckNew(n - 1, false, thisProxy);
CProxy Fib::ckNew(n - 2, false, thisProxy);

Charm++ Tutorial

Fibonacci Example

void result(int val) // when a child chare sends me its
value

{total += val; if (—-count == 0) respond(); }

void respond(int val) {

if (isRoot) { CkPrintf(“Fibonacci number is: %d\n”,
result);

CKEx1it();
}

else { parent.result(total);
delete this;
// this 1s unusual. Tells the system to delete
this
//chare after the entry method returns.

}

Charm++ Tutorial

4

PPL

U10(

Consider the Fibonacci Chare

* The Fibonacci chare gets created
* Ifitis not a leaf,

EE BN
[| g

BN MB

Bl =

— It fires two chares

— When both children return results (by calling respond):
* |t can compute my result and send it up, or print it

— But in our example, this logic is hidden in the flags and counters
* This is simple for this simple example, but ...

— Lets look at how this would look with a little notational support

Charm++ Tutorial

PPL

UI0C

Structured Dagger: a script for a hare

* Actually, its a script for an entry method

— But a common pattern is to use a single “run”
method for a chare as an sdag (structured dagger)
entry method

* You have to write this script in .ci file
— Because we don’t want to parse entire C++ code.

* Some entry methods are defined, rather than

just declared, in the .ci file using sdag notation.

* Some other entry methods get implicitly
defined if they get usedin “when blocks” of
sdag scripts

L
e i

module xyz {
chare abc {
entry abc();
entry f1();
entry run() {
sdag script here.
includes when statements

}
entry g();
entry h(..) {

second sdag entry method.

}
X
}

.Ci file

PPL

UI0C

FI

EE e
M |
\

Structured Dagger

The when construct

* The when construct
— Declare the actions to perform when a message is received
— In sequence, it acts like a blocking receive

entry void someMethod() {

when entryMethodl(parameters) { /* block2
x/ }

when entryMethod2(parameters) { /*x block3
x/ }

b

| R

PPL

Charm++ Tutorial 7 UDIbC

NN

l?.
',-/,_4

Structured Dagger

The serial construct

The serial construct

— A sequential block of C++ code in the .ci file

— The keyword serial means that the code block will be executed without
interruption/preemption, like an entry method

— Syntax: serial <optionalString> { /* C++ code */ }
— The <optionalString> is used for identifying the serial for performance analysis
— Serial blocks can access all members of the class they belong to

AW _W_V_W_N W _W_\

“ent 'r"'\}mdvbo&al IIIU’éhod 1(parameters)

{

serial {

thisProxy.invokeMethod(10);
callSomeFunction();

entry void
method2(parameters) {

serial “setValue” {
value = 10;

b

L

} ' Charm++ Tutorial
’

PPL

UI0C

Structured Dagger

The implicit sequence construct

entry void someMethod() {
serial { /* blockl */ }

when entryMethodl(parameters) serial { /* block2
x/ }
when entryMethod2(parameters) serial { /x block3

wx/
/7

* Sequence:
— Sequentially execute /*blockl ¥

— Wait for entryMethod1 to arrive, if it has not, return control back to the
Charm++ scheduler, otherwise, execute /*block2 %/

— Wait for entryMethod?2 to arrive, if it has not, return control back to the
Charm++ scheduler, otherwise, execute /*block3 ¥/

EE A
=2 ea PPL

Charm++ Tutorial 9 UDIbC

Structured Dagger

The when construct: waiting for multiple invocations

* Execute sdagScript when method1 and method?2 arrive

when methodl(int paraml, int param2),
method2 (bool param3)
{sdagScript}

* Which is semantically the same as this:

when myMethodl(int paraml, int param2) {
when myMethod2(bool param3) { }

}
{sdagScript}

PPL

Charm++ Tutorial 10 UI1o(

Structured Dagger

Boilerplate

* Structured Dagger can be used in any entry method (except for a
constructor)
— Can be used ina mainchare, chare, or array

* For any class that has Structured Dagger in it you must insert
— The Structured Dagger macro: [ClassName] SDAG CODE

F]
['&.\L’
M

Charm++ Tutorial 11

EE BE
,]
1§

PPL

UI10C

Structured Dagger

Boilerplate

The .ci file: [mainchare, chare,array] MyFoo {

entry void method(parameters) {
// .. structured dagger code here ..

}i

The .Cpp file: class MyFoo : public CBase MyFoo {
MyFoo SDAG Code /* insert SDAG macro */

public:
MyFoo() { }

}i

PPL

12 U10(

Charm++ Tutorial

Fibonacci with Structured Dagger

mainmodule fib {
mainchare Main {
entry Main(CkArgMsg+* m);
}i
chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void calc(int n) {
if (n < THRESHOLD) serial { respond(seqFib(n)); }
else {
serial {
CProxy Fib::ckNew(n - 1, false, thisProxy);
CProxy Fib::ckNew(n - 2, false, thisProxy);
}
when result(int val), result(int val2)
serial { respond(val + val2); }
}
}i
entry void result(int);
b
}i

Charm++ Tutorial

Fibonacci with Structured Dagger

#include “fib.decl.h”
#define THRESHOLD 10
class Main : public CBase Main {
public: Main(CkArgMsgx m) {
CProxy Fib::ckNew(atoi(m—>argv[1l]), true, CProxy Fib()); } };
class Fib : public CBase Fib {
public:
Fib SDAG CODE
CProxy Fib parent; bool isRoot;

Fib(int n, bool isRoot , CProxy Fib parent):parent(parent),
isRoot(isRoot)

{ thisProxy.calc(n); }

int seqFib(int n) { return (n < 2) ? n : seqFib(n - 1) + segFib(n -
2); }

void respond(int val) {

if (!'isRoot) { parent.response(val);

delete this; }
else { CkPrintf(”Fibonacci number is: %d\n”, val);
CKExit(); }

Charm++ Tutorial

Structured Dagger

The when construct : reference number matching

* The when clause can wait on a certain reference number

* |f a reference number is specified for a when , the first parameter
for the when must be the reference number

* Semantics: the when will “block” until a message arrives with that

reference number

when method1[100](int ref, bool paraml)
/*x sdag block x/

proxy.method1(200, false); /x will not be delivered to the above
when x/

proxy.methodl(100, true); /*x will be delivered to the above when x/

Charm++ Tutorial 15 UI1o(

LA
s PPL
[|
U

Structured Dagger

The 1f-then-else construct

* The if-then-else construct:
— Same as the typical C 1f-then-else semantics and syntax

if (thisIndex.x == 10) {

when methodl[block] (int ref, bool someVal) /x*x code
blockl x/

} else {
when method2(int payload) serial {
//... some C++ code

}

PPL

Charm++ Tutorial 16 UI1o(

Structured Dagger

The for construct

The for construct:
* Defines a sequenced for loop (like a sequential C for loop)
* Once the body for the #h iteration completes, the 7+ 1 iteration is started

for (iter = 0; iter < maxIter; ++iter) {

when recvLeft[iter](int num, int len, double
data[len])

serial { computeKernel (LEFT, data); }

when recvRight[iter](int num, int len, double
data[len])

serial { computeKernel (RIGHT, data); }

L It |v < L 4

iter must bg defined as a class member
* Because no variables are allowed to be declared inside sdaqg scripts

=7

class Foo : public CBase Foo {
public: int iter;

b

Charm++ Tutorial
chaf++1dtortat

Structured Dagger

The while construct

The while construct:
* Defines a sequenced while loop (like a sequential C while loop)

while (i < numNeighbors) {

when recvData(int len, double data[len]) {

serial {
/* do something x/

}
when methodl() /x blockl x/
when method2() /* block2 x*/

}

serial { i++; }

PPL

Charm++ Tutorial 18 UI1o(

Structured Dagger

The overlap construct

The overlap construct:
— By default, Structured Dagger defines a sequence that is followed sequentially
— overlap allows multiple independent clauses to execute in any order
— Any constructs in the body of an overlap can happen in any order
— An overlap finishes in sequence when all the statements in it are executed
— Syntax: overlap { /* sdag constructs */ }

What are the possible execution sequences?

serial { /* blockl */ }

overlap {
serial { /* block2 */ }
when entryMethodl1[100] (int ref num, bool paraml) /x block3 x/
when entryMethod2(char myChar) /* block4 */

}
serial { /x block5 x/ }

FI

=\e

L

i
L ¢

MR

EE e
M |
\
NN

PPL

Charm-++ Tutorial 19 vioc

lllustration of a Long “Overlap”

* Overlap can be used to get
back some of the asynchrony
within a chare
— But it is constrained

— Makes for more disciplined
programming
* Fewer race conditions

EE

M
W

mE EE
: IIF_
[|

20

PPL

U10(

	Chares Are Reactive
	Fibonacci Example
	Fibonacci Example (2)
	Fibonacci Example (3)
	Consider the Fibonacci Chare
	Structured Dagger: a script for a hare
	Structured Dagger The when construct
	Structured Dagger The serial construct
	Structured Dagger The implicit sequence construct
	Structured Dagger The when construct: waiting for multiple invo
	Structured Dagger Boilerplate
	Structured Dagger Boilerplate (2)
	Fibonacci with Structured Dagger
	Fibonacci with Structured Dagger (2)
	Structured Dagger The when construct : reference number matchin
	Structured Dagger The if-then-else construct
	Structured Dagger The for construct
	Structured Dagger The while construct
	Structured Dagger The overlap construct
	Illustration of a Long “Overlap”

