
CHARE ARRAY SECTIONS

Charm++ Tutorial



Chare Array Review

• Arbitrarily-sized collection of chares

• Every item in the collection has a unique index and proxy

• Can be indexed like an array or by an arbitrary object

• Can be sparse or dense

• Elements may be dynamically inserted and deleted

• Elements can be migrated
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Motivation

• It is often convenient to define subcollections of elements within a 
chare array
– Example: rows or columns of a 2D chare array
– One may wish to perform collective operations on the subcollection (e.g. 

broadcast, reduction)

• Sections are the standard subcollection construct in Charm++
– A section is a subset of a Chare Array
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Section Creation
• Through explicit enumeration:
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CkVec<CkArrayIndex3D> elems;    // add array indices
  for (int i=0; i<10; i++)
    for (int j=0; j<20; j+=2)
      for (int k=0; k<30; k+=2)
         elems.push_back(CkArrayIndex3D(i, j, k));

CProxySection_Hello proxy = 
   CProxySection_Hello::ckNew(helloArrayID, 
elems.getVec(), elems.size());



Section Creation
• Through index range specification:
• Specify array ID of the base chare array and the inidvidual chare 

array elements of the array participating in the section
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CProxySection_Hello proxy =   
CProxySection_Hello::ckNew(helloArrayID, 

0, 9, 1, 0, 19, 2, 0, 29, 2); 
                                               



Section Class Generation
• Section proxy classes are automatically generated for each chare 

and group defined in the .ci file
• Placed into decl.h and def.h files
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Using Sections
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CProxySection_Hello proxy;

// section broadcast
proxy.someEntry(...) 
         

//sections are unranked, not allowed 
proxy[0].someEntry(...)       

• For example implementations, see
• $(CHARM)/examples/charm++/arraysection 
• https://charmplusplus.org/miniApps/#leanmd



Spanning Trees
• CkMulticast implements tree algorithms for multicasts and 

reductions
– Messages are routed over a spanning tree of the section elements

• Default branching factor is 2, 
– but a different number can be specified while creating a section
– Add branching factor as a last integer parameter
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CkMulticast Messages
• To use CkMulticast library, all multicast messages must inherit 

from CkMcastBaseMsg
– CkMcastBaseMsg must be inherited from first
– No parameter marshalling is allowed in entry methods used as targets of 

multicast
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class HiMsg : public CkMcastBaseMsg, public CMessage_HiMsg
{
   public:
 int *data;
      ..
};



Reductions: setReductionClient
• An array element can be a member of multiple array sections
– It is necessary to disambiguate which array section reduction it is 

participating in each time it contributes to one
• The reduction callback should be set at the time of creation. 
– This callback will be invoked after each reduction is complete 
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CkCallback *cb =  new CkCallback(
                        CkReductionTarget (Cell, reduceForces), 
                        thisProxy(thisIndex.x,thisIndex.y,thisIndex.z)));

mySecProxy.setReductionClient(cb); 



Reductions: CkSectionInfo
• A data structure called ''CkSectionInfo'' is created by 

CkMulticastMgr for each array section that the array element 
belongs to
– During a section reduction, the array element must pass the CkSectionInfo 

as a parameter in the contribute()
– This CkSectionInfo “cookie” can be retrieved from a previous message that 

was sent through CkMulticastMgr
• Therefore, you can contribute into a reduction only following a broadcast to the same 

section. 
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Reductions with CkMulticast 
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CkSectionInfo cookie;

void SayHi(HiMsg *msg)
{  // this is a broadcast to SayHi using 
   // the section we want to to contribute to
    //update section cookie every time
    CkGetSectionInfo(cookie, msg);     
    int data = thisIndex;
    mcastGrp->contribute(sizeof(int),&data,   
                            
        CkReduction::sum_int, cookie);
}



Callbacks

• As with array reductions, a callback needs to be specified with 
each contribute
– OR a default callback should be specified using setReductionClient
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Example: Matrix Multiplication
• Inputs: 2D chare arrays A, B of matrix blocks
• Output: 2D chare array C of matrix blocks
• Elements of A and B multicast their blocks to a section comprising 

a row or column of C
• Exercise: implement algorithm
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Example: LeanMD
• Lennart-Jones Dynamics 
• We have a 3D array of Cells
• And a 6D array of cell-pairs 
– (also called “compute” objects in the leanmd miniApp at 

https://charmplusplus.org/miniApps/#leanmd )
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https://charmplusplus.org/miniApps/#leanmd


 
Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

•Now, we have many 
objects to load balance:

• Each diamond can be  assigned to 
any proc.

•  Number of diamonds (3D): 
– 14·Number of Patches

–2-away variation:
– Half-size cubes
– 5x5x5 interactions

–3-away interactions: 7x7x7



Parallelization Using Charm++
The computation is decomposed into “natural” objects of the application, 
which are assigned to processors by Charm++ RTS



LJdynamics - Cell
 entry void run() {

for(stepCount = 1; stepCount <= finalStepCount; stepCount+
+) {

    atomic { sendPositions(); }
    for(forceCount=0; forceCount < inbrs; forceCount++)

          when receiveForces[stepCount](int iter, vec3 
forces[n], int n) 

    atomic { addForces(forces); }
        atomic { updateProperties(); }
            if ((stepCount %  MIGRATE_STEPCOUNT) == 0) {

atomic { sendParticles(); }
when statements for receiving particles from 

neighbors
    }
}//end of for loop
atomic {

        contribute(0, CkReduction::NULL, 
         CkCallback(CkReductionTarget(Main,done),mainProxy));

}
}//end of run



LJdynamics - Pair
entry void run() {
   for(stepCount = 1; stepCount <= finalStepCount; stepCount++) {
   if (thisIndex.x1==thisIndex.x2 &&         
thisIndex.y1==thisIndex.y2 &&
       thisIndex.z1==thisIndex.z2) 
        when calculateForces[stepCount](ParticleData *data) 
                 atomic { selfInteract(data); }
  else {

when calculateForces[stepCount]   (ParticleData *data) 
            atomic { bufferedData = data; }
       when calculateForces[stepCount](ParticleData *data) 
            atomic { interact(data); }
        }
     // contribute/send forces to the cells involved
    }//enf of for loop
};//end of run



Using section in sendPositions
• Especially useful if you are using a 2-away formulation:
– There are 5x5x5 = 125 pairs to which each cell must send its coordinates

• Same data to everyone, so it is a Multicast

• This happens repeatedly, every iteration
– At load balancing time the locations of pairs may change, but the set is the 

same
• So, each cell sets up its own section of pairs
• Each pair is a member of two [or one] sections
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Expressing in Charm++

• Two chare arrays: 
– Cells: a 3D array of chares
– Pairs: one object for each “neighboring” chare

• What is the dimensionality of “pairs”?
– Idea 1: make it a 3D array.. Does it work?
– Idea 2: Make it a 1D array,

• Explicitly assign indices to chares: the pair object between Cells[2,3,4] 
and Cells[2,3,5] is Pairs[someIndex].

– Idea 3: Make it a 6D array
• Pairs[2,3,4,2,3,5]
• But: (a) it is sparse and 
• (b) symmetry? Do we also have Pairs[2,3,5,2,3,4]
• Use only one of them.. (say “smaller” in dictionary order)



 
Object Based Parallelization for MD              

  (with sections)
•All pairs in the box constitute 
a section for the central proc:

•  Central chare uses CkMulticast for 
optimized broadcasts to this section

•  Without CkMulticast, it would have been 
point-to-point sends for all

•  Reductions are used across the section 
to aggregate results for force calculation
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