CHARE ARRAY SECTIONS

vroc



Chare Array Review

* Arbitrarily-sized collection of chares

* Every item in the collection has a unique index and proxy
* Can be indexed like an array or by an arbitrary object

* Can be sparse or dense

* Elements may be dynamically inserted and deleted

* Elements can be migrated

PPL

2 U10(




Motivation

* |t is often convenient to define subcollections of elements within a
chare array
— Example: rows or columns of a 2D chare array
— One may wish to perform collective operations on the subcollection (e.g.
broadcast, reduction)
* Sections are the standard subcollection construct in Charm++

— A section is a subset of a Chare Array

EE AR
=% PPL

3 UI0C




Section Creation

* Through explicit enumeration:

CkVec<CkArrayIndex3D> elems; // add array indices
for (int 1=0; i<10; i++)
for (int =0, 3<20; j+=2)
for (int k=0,; k<30; k+=2)
elems.push back (CkArrayIndex3D(1i, J, k));

CProxySection Hello proxy =
CProxySection Hello::ckNew(helloArrayID,

elems.getVec (), elems.size());

[
IF.

-

| [

H
[,
B
i
|

1




Section Creation

* Through index range specification:

* Specify array ID of the base chare array and the inidvidual chare
array elements of the array participating in the section

CProxySection Hello proxy =
CProxySection Hello::ckNew (helloArrayID,
o, 9, 1, 0, 19, 2, 0, 29, 2);

PPL

UI10C




Section Class Generation

* Section proxy classes are automatically generated for each chare
and group defined in the .ci file

* Placed into decl.h and def.h files




Using Sections

CProxySection Hello proxy;

// section broadcast

proxy.somekEntry (...)

//sections are unranked, not allowed
proxy[0] .someEntry (...)

* For example implementations, see
*  $(CHARM)/examples/charm++/arraysection
* https://charmplusplus.org/miniApps/#leanmd

PPL

7 U10(




Spanning Trees

* CkMulticast implements tree algorithms for multicasts and
reductions
— Messages are routed over a spanning tree of the section elements

* Default branching factor is 2,
— but a different number can be specified while creating a section
— Add branching factor as a last integer parameter

L
= Ed
AN e
Bl =

PPL

UI0C




CkMulticast Messages

* To use CkMulticast library, all multicast messages must inherit
from CkMcastBaseMsg
— CkMcastBaseMsg must be inherited from first

— No parameter marshalling is allowed in entry methods used as targets of
multicast

class HiMsg : public CkMcastBaseMsg, public CMessage HiMsg

{
public:

int *data;

EE BN
[ | g

BN MB

Bl =

PPL

UI0C




Reductions: setReductionClient

* An array element can be a member of multiple array sections

— It is necessary to disambiguate which array section reduction it is
participating in each time it contributes to one

* The reduction callback should be set at the time of creation.
— This callback will be invoked after each reduction is complete

CkCallback *cb = new CkCallback(
CkReductionTarget (Cell, reduceForces),

thisProxy (thisIndex.x,thisIndex.y,thisIndex.z)));

.ne mySecProxy.setReductionClient (cb) ;

I€7ﬂf
| M

10

PPL

UToc




Reductions: CkSectioninfo

* A data structure called "CkSectionInfo" is created by
CkMulticastMgr for each array section that the array element
belongs to

— During a section reduction, the array element must pass the CkSectionlnfo
as a parameter in the contribute()

— This CkSectionlnfo “cookie” can be retrieved from a previous message that
was sent through CkMulticastMgr

* Therefore, you can contribute into a reduction only following a broadcast to the same
section.

EE BN
[ | g

BN MB

Bl =

PPL

UI0C




Reductions with CkMulticast

CkSectionInfo cookie;

vold SayHi (HiMsg *msq)
{ // this is a broadcast to SayHi using
// the section we want to to contribute to

//update section cookie every time
CkGetSectionInfo (cookie, msqg);

int data = thisIndex;
mcastGrp->contribute (sizeof (int), &data,

CkReduction::sum int, cookile);

PPL

12 U10(




Callbacks

* As with array reductions, a callback needs to be specified with
each contribute
— OR a default callback should be specified using setReductionClient

F ]
[ '&.\L’
M

EE BE
, ]
1§

PPL

UI10C




Example: Matrix Multiplication

* Inputs: 2D chare arrays A, B of matrix blocks
Output: 2D chare array C of matrix blocks

* Elements of A and B multicast their blocks to a section comprising
a row or column of C

* Exercise: implement algorithm

PPL

14 U10(




Example: LeanMD

* Lennart-Jones Dynamics
* We have a 3D array of Cells

* And a 6D array of cell-pairs

— (also called “compute” objects in the leanmd miniApp at
https://charmplusplus.org/miniApps/#leanmd )

PPL

15 UI10C



https://charmplusplus.org/miniApps/#leanmd

(] |

3

1 B

EE BN
1|

M |

Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

*Now, we have many
objects to load balance:

* Each diamond can be assigned to
any proc.

* Number of diamonds (3D):
— 14-:Number of Patches
—2-away variation:
— Half-size cubes
— 5x5x5 interactions
—3-away interactions: 7x7x7

PPL

U10(



Parallelization Using Charm++

The computation is decomposed into “natural” objects of the application,
which are assigned to processors by Charm++ RTS

(1 |

-

|

e ..
]

|

1|

Patch Integration

P9 VH-----PIFVD I
\\

<> @

Non-bonded

‘ ’ Computes

‘/

N N N JKERERN N N N

Patch Integration

PPL

U10(



LJdynamics - Cell

entry void run() ({
for (stepCount = 1; stepCount <= finalStepCount; stepCount+

+) |
atomic { sendPositions(); }
for (forceCount=0; forceCount < inbrs; forceCount++)
when receiveForces|[stepCount] (int iter, vec3
forces[n], int n)
atomic { addForces (forces); }
atomic { updateProperties(); }
if ((stepCount % MIGRATE STEPCOUNT) == 0) {
atomic { sendParticles(); }
when statements for receiving particles from
neighbors

}
}//end of for loop

atomic {
contribute (0, CkReduction::NULL,
CkCallback (CkReductionTarget (Main,done) ,mainProxy)) ;
} PPL

}//end of run D10




LJdynamics - Pair

entry void run() {
for (stepCount = 1; stepCount <= finalStepCount; stepCount++) {

if (thisIndex.xl==thisIndex.x2 &&
thisIndex.yl==thisIndex.y2 &&

thisIndex.zl==thisIndex.z?2)
when calculateForces[stepCount] (ParticleData *data)
atomic { selfInteract (data); }
else {
when calculateForces[stepCount] (ParticleData *data)
atomic { bufferedData = data; }
when calculateForces[stepCount] (ParticleData *data)
atomic { interact (data); }
}
// contribute/send forces to the cells involved
}//enf of for loop
};//end of run PPL

U10(




NN

1
]
N

L A\ﬂ«,\

1
M |
Bl

Using section in sendPositions

Especially useful if you are using a 2-away formulation:

— There are 5x5x5 = 125 pairs to which each cell must send its coordinates
* Same data to everyone, so it is a Multicast

This happens repeatedly, every iteration

— At load balancing time the locations of pairs may change, but the sefis the
same

So, each cell sets up its own section of pairs
Each pair is a member of two [or one] sections

20




Expressing in Charm++

* Two chare arrays:
— Cells: a 3D array of chares
— Pairs: one object for each “neighboring” chare

* What is the dimensionality of ‘pairs™?
— Idea 1: make it a 3D array.. Does it work?

— |ldea 2: Make it a 1D array,

* Explicitly assign indices to chares: the pair object between Cells[2,3,4]
and Cells[2,.3.0] is Pairs[somelndex],
as ldea 3: Make it a 6D array )

* Pairs[2,3,4,2,3,5]
* But: (a) it is sparse and
* (b) symmetry? Do we also have Pairs[2,3,5,2,3,4]
\ * Use only one of them.. (say “smaller” in dictionary order) ) PPL

U10(




(1 |

S E

|

|

1|

Object Based Parallelization for MD
(with sections)

*All pairs in the box constitute

. - . a section for the central proc:
\.\ $ ‘/, * Central chare uses CkMulticast for
e

‘ optimized broadcasts to this section
*  Without CkMulticast, it would have been

point-to-point sends for all
. * Reductions are used across the section

to aggregate results for force calculation
&
T H »

PPL

U10(



	Chare Array Sections
	Chare Array Review
	Motivation
	Section Creation
	Section Creation (2)
	Section Class Generation
	Using Sections
	Spanning Trees
	CkMulticast Messages
	Reductions: setReductionClient
	Reductions: CkSectionInfo
	Reductions with CkMulticast
	Callbacks
	Example: Matrix Multiplication
	Example: LeanMD
	
	Parallelization Using Charm++
	LJdynamics - Cell
	LJdynamics - Pair
	Using section in sendPositions
	Expressing in Charm++
	(2)

