
CHARE ARRAY SECTIONS

Charm++ Tutorial

Chare Array Review

• Arbitrarily-sized collection of chares

• Every item in the collection has a unique index and proxy

• Can be indexed like an array or by an arbitrary object

• Can be sparse or dense

• Elements may be dynamically inserted and deleted

• Elements can be migrated

10/24/2023 cs598LVK 2

Motivation

• It is often convenient to define subcollections of elements within a
chare array
– Example: rows or columns of a 2D chare array
– One may wish to perform collective operations on the subcollection (e.g.

broadcast, reduction)

• Sections are the standard subcollection construct in Charm++
– A section is a subset of a Chare Array

10/24/2023 cs598LVK 3

Section Creation
• Through explicit enumeration:

10/24/2023 cs598LVK 4

CkVec<CkArrayIndex3D> elems; // add array indices
 for (int i=0; i<10; i++)
 for (int j=0; j<20; j+=2)
 for (int k=0; k<30; k+=2)
 elems.push_back(CkArrayIndex3D(i, j, k));

CProxySection_Hello proxy =
 CProxySection_Hello::ckNew(helloArrayID,
elems.getVec(), elems.size());

Section Creation
• Through index range specification:
• Specify array ID of the base chare array and the inidvidual chare

array elements of the array participating in the section

10/24/2023 cs598LVK 5

CProxySection_Hello proxy =
CProxySection_Hello::ckNew(helloArrayID,

0, 9, 1, 0, 19, 2, 0, 29, 2);

Section Class Generation
• Section proxy classes are automatically generated for each chare

and group defined in the .ci file
• Placed into decl.h and def.h files

10/24/2023 cs598LVK 6

Using Sections

10/24/2023 cs598LVK 7

CProxySection_Hello proxy;

// section broadcast
proxy.someEntry(...)

//sections are unranked, not allowed
proxy[0].someEntry(...)

• For example implementations, see
• $(CHARM)/examples/charm++/arraysection
• https://charmplusplus.org/miniApps/#leanmd

Spanning Trees
• CkMulticast implements tree algorithms for multicasts and

reductions
– Messages are routed over a spanning tree of the section elements

• Default branching factor is 2,
– but a different number can be specified while creating a section
– Add branching factor as a last integer parameter

10/24/2023 cs598LVK 8

CkMulticast Messages
• To use CkMulticast library, all multicast messages must inherit

from CkMcastBaseMsg
– CkMcastBaseMsg must be inherited from first
– No parameter marshalling is allowed in entry methods used as targets of

multicast

10/24/2023 cs598LVK 9

class HiMsg : public CkMcastBaseMsg, public CMessage_HiMsg
{
 public:
 int *data;
 ..
};

Reductions: setReductionClient
• An array element can be a member of multiple array sections
– It is necessary to disambiguate which array section reduction it is

participating in each time it contributes to one
• The reduction callback should be set at the time of creation.
– This callback will be invoked after each reduction is complete

10/24/2023 cs598LVK 10

CkCallback *cb = new CkCallback(
 CkReductionTarget (Cell, reduceForces),
 thisProxy(thisIndex.x,thisIndex.y,thisIndex.z)));

mySecProxy.setReductionClient(cb);

Reductions: CkSectionInfo
• A data structure called ''CkSectionInfo'' is created by

CkMulticastMgr for each array section that the array element
belongs to
– During a section reduction, the array element must pass the CkSectionInfo

as a parameter in the contribute()
– This CkSectionInfo “cookie” can be retrieved from a previous message that

was sent through CkMulticastMgr
• Therefore, you can contribute into a reduction only following a broadcast to the same

section.

10/24/2023 cs598LVK 11

Reductions with CkMulticast

10/24/2023 cs598LVK 12

CkSectionInfo cookie;

void SayHi(HiMsg *msg)
{ // this is a broadcast to SayHi using
 // the section we want to to contribute to
 //update section cookie every time
 CkGetSectionInfo(cookie, msg);
 int data = thisIndex;
 mcastGrp->contribute(sizeof(int),&data,

 CkReduction::sum_int, cookie);
}

Callbacks

• As with array reductions, a callback needs to be specified with
each contribute
– OR a default callback should be specified using setReductionClient

10/24/2023 cs598LVK 13

Example: Matrix Multiplication
• Inputs: 2D chare arrays A, B of matrix blocks
• Output: 2D chare array C of matrix blocks
• Elements of A and B multicast their blocks to a section comprising

a row or column of C
• Exercise: implement algorithm

10/24/2023 cs598LVK 14

Example: LeanMD
• Lennart-Jones Dynamics
• We have a 3D array of Cells
• And a 6D array of cell-pairs
– (also called “compute” objects in the leanmd miniApp at

https://charmplusplus.org/miniApps/#leanmd)

10/24/2023 cs598LVK 15

https://charmplusplus.org/miniApps/#leanmd

Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

•Now, we have many
objects to load balance:

• Each diamond can be assigned to
any proc.

• Number of diamonds (3D):
– 14·Number of Patches

–2-away variation:
– Half-size cubes
– 5x5x5 interactions

–3-away interactions: 7x7x7

Parallelization Using Charm++
The computation is decomposed into “natural” objects of the application,
which are assigned to processors by Charm++ RTS

LJdynamics - Cell
 entry void run() {

for(stepCount = 1; stepCount <= finalStepCount; stepCount+
+) {

 atomic { sendPositions(); }
 for(forceCount=0; forceCount < inbrs; forceCount++)

 when receiveForces[stepCount](int iter, vec3
forces[n], int n)

 atomic { addForces(forces); }
 atomic { updateProperties(); }
 if ((stepCount % MIGRATE_STEPCOUNT) == 0) {

atomic { sendParticles(); }
when statements for receiving particles from

neighbors
 }
}//end of for loop
atomic {

 contribute(0, CkReduction::NULL,
 CkCallback(CkReductionTarget(Main,done),mainProxy));

}
}//end of run

LJdynamics - Pair
entry void run() {
 for(stepCount = 1; stepCount <= finalStepCount; stepCount++) {
 if (thisIndex.x1==thisIndex.x2 &&
thisIndex.y1==thisIndex.y2 &&
 thisIndex.z1==thisIndex.z2)
 when calculateForces[stepCount](ParticleData *data)
 atomic { selfInteract(data); }
 else {

when calculateForces[stepCount] (ParticleData *data)
 atomic { bufferedData = data; }
 when calculateForces[stepCount](ParticleData *data)
 atomic { interact(data); }
 }
 // contribute/send forces to the cells involved
 }//enf of for loop
};//end of run

Using section in sendPositions
• Especially useful if you are using a 2-away formulation:
– There are 5x5x5 = 125 pairs to which each cell must send its coordinates

• Same data to everyone, so it is a Multicast

• This happens repeatedly, every iteration
– At load balancing time the locations of pairs may change, but the set is the

same
• So, each cell sets up its own section of pairs
• Each pair is a member of two [or one] sections

10/24/2023 cs598LVK 20

Expressing in Charm++

• Two chare arrays:
– Cells: a 3D array of chares
– Pairs: one object for each “neighboring” chare

• What is the dimensionality of “pairs”?
– Idea 1: make it a 3D array.. Does it work?
– Idea 2: Make it a 1D array,

• Explicitly assign indices to chares: the pair object between Cells[2,3,4]
and Cells[2,3,5] is Pairs[someIndex].

– Idea 3: Make it a 6D array
• Pairs[2,3,4,2,3,5]
• But: (a) it is sparse and
• (b) symmetry? Do we also have Pairs[2,3,5,2,3,4]
• Use only one of them.. (say “smaller” in dictionary order)

Object Based Parallelization for MD

 (with sections)
•All pairs in the box constitute
a section for the central proc:

• Central chare uses CkMulticast for
optimized broadcasts to this section

• Without CkMulticast, it would have been
point-to-point sends for all

• Reductions are used across the section
to aggregate results for force calculation

	Chare Array Sections
	Chare Array Review
	Motivation
	Section Creation
	Section Creation (2)
	Section Class Generation
	Using Sections
	Spanning Trees
	CkMulticast Messages
	Reductions: setReductionClient
	Reductions: CkSectionInfo
	Reductions with CkMulticast
	Callbacks
	Example: Matrix Multiplication
	Example: LeanMD
	
	Parallelization Using Charm++
	LJdynamics - Cell
	LJdynamics - Pair
	Using section in sendPositions
	Expressing in Charm++
	(2)

