
Charm++ Applications
as case studies

Only brief overview today

Charm++ Tutorial 1

NAMD: Biomolecular Simulations

• Collaboration with K. Schulten
• With over 50,000 registered

users
• Scaled to most top US

supercomputers
• In production use on

supercomputers and clusters
and desktops

• Gordon Bell award in 2002

Recent success: Determination of
the structure of HIV capsid by
researchers including Prof Schulten

2Charm++ Tutorial

Charm++ Tutorial 3

NAMD: Molecular Dynamics

• Collection of [charged] atoms, with bonds
• Newtonian mechanics
• At each time-step
– Calculate forces on each atom

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Calculate velocities and advance positions
• 1 femtosecond time-step, millions needed!
• Thousands of atoms (1,000 - 100,000)

Collaboration with K. Schulten, R. Skeel, and coworkers

Charm++ Tutorial 4

Further MD
• Use of cut-off radius to reduce work
– 8 - 14 Å
– Faraway charges ignored!

• 80-95 % work is non-bonded force computations
• Some simulations need faraway contributions

Charm++ Tutorial 5

Traditional Approaches: non isoefficient

• Replicated Data:
– All atom coordinates stored on each processor

• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute force matrix to processors
– Matrix is sparse, non uniform,
– C/C Ratio: sqrt(P)

Charm++ Tutorial 6

Spatial Decomposition Via Charm

•Atoms distributed to cubes based on
their location
• Size of each cube :

• Just a bit larger than cut-off radius
• Communicate only with neighbors
• Work: for each pair of nbr objects

•C/C ratio: O(1)
•However:

• Load Imbalance
• Limited Parallelism

Cells, Cubes or“Patches”

Charm++ is useful to handle this

Charm++ Tutorial 7

Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

•Now, we have many objects
to load balance:

• Each diamond can be
assigned to any proc.

• Number of diamonds (3D):
– 14·Number of Patches

–2-away variation:
–Half-size cubes
– 5x5x5 interactions

–3-away interactions: 7x7x7

Parallelization using Charm++

Charm++ Tutorial 8

Charm++ Tutorial 9

Amdahl and variants

• The original Amdahl’s law, interpreted as:
– If there is a x% sequential component, speedup can’t be more than 100/x.

• Variations:
– If you decompose a problem into many parts, then the parallel time cannot

be less than the largest of the parts
– If the critical path through a computation is T1, you cannot complete in less

time than T, no matter how many processors you use
– …

Charm++ Tutorial 10

Grainsize and Amdahls’s law
• A variant of Amdahl’s law, for objects:
– The fastest time can be no shorter than the time for the biggest single

object!
• How did it apply to us?
– Sequential step time was 57 seconds
– To run on 2k processors, no object should be more than 28 msecs.
– Analysis using our tools showed:

Charm++ Tutorial 11

Grainsize analysis

Grainsize distribution

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

grainsize in milliseconds

n
u

m
b

e
r

o
f

o
b

je
c

ts
Solution:
Split compute
objects that may
have too much
work:
using a heuristics
based on number of
interacting atoms

Problem

Charm++ Tutorial 12

Fine Grained Decomposition on BlueGene

Charm++ Tutorial 13

Grainsize reduced

Grainsize distribution after splitting

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25

grainsize in msecs

n
u

m
b

er
 o

f
o

b
je

ct
s

Charm++ Tutorial 14

Integration overhead analysis

integration

Problem: integration time had doubled from sequential run

Charm++ Tutorial 15

Integration overhead example:
• The visualization showed: the overhead was associated with

sending messages.
• Many cells were sending 30-40 messages.
– The overhead per message was too high
– Code analysis: memory allocations!
– Identical message being sent to 30+ processors.

• Multicast support was added to Charm++
– Mainly eliminates memory allocations

Charm++ Tutorial 16

Integration overhead: After

Charm++ Tutorial 17

Improved Performance Data

Speedup on Asci Red

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Processors

S
p

ee
d

u
p

Published in
SC2000:
Gordon Bell
Award
Finalist

Charm++ Tutorial 18

700
VPs

192 +
144 VPs

30,000 VPs

NAMD Parallelization using Charm++ : PME

These 30,000+ Virtual Processors (VPs) are mapped to real
processors by charm runtime system

Charm++ Tutorial 19

Whereas on BlueGene/L (recent
tuning), 1024 procs

Shallow valleys, high peaks,
nicely overlapped PME

Charm++ Tutorial 20

On Cray XT3, 512 processors

Grainsize example: NAMD
• High performing examples (objects are the work-data units in Charm+

+):
• On Blue Waters, 100M atom simulation
– 128K cores (4K nodes): 5,510,202 objects

• Edison, Apoa1 (92K atoms)
– 4K cores: 33,124 objects

• Hopper, STMV (1M atoms)
– 15,360 cores: 430,612 objects

Charm++ Tutorial 21

Charm++ Tutorial 22

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and Mira IBM Blue Gene/Q for
21M and 224M atom benchmarks

Recent success
with NAMD:

Charm++ Tutorial 23

Coronavirus
simulations

 Credit: Amaro Lab UCSD

2021/11/16 10:00:59

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington
• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp
– Geometry has better aspect ratios, so

you “open” up fewer nodes
– But is not used because it leads to bad

load balance
– Assumption: one-to-one map between

sub-trees and PEs
– Binary trees are considered better load

balanced
Charm++ Tutorial 24

With Charm++: Use Oct-Tree, and let Charm++
map subtrees to processors

Evolution of Universe and Galaxy
Formation

Charm++ Tutorial 25

ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of
Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp
– Geometry has better aspect

ratios, so you “open” up fewer
nodes

– But is not used because it leads
to bad load balance

– Assumption: one-to-one map
between sub-trees and PEs

– Binary trees are considered
better load balanced

With Charm++: Use Oct-Tree,
and let Charm++ map subtrees
to processors

Evolution of Universe and Galaxy
Formation

Charm++ Tutorial 26

ChaNGa: Cosmology Simulation

• Tree: Represents
particle distribution

• TreePiece:
object/chares
containing particles

Collaboration with Tom
Quinn UW

Charm++ Tutorial 27

• Asynchronous, highly overlapped, phases
• Requests for remote data overlapped with local

computations

ChaNGa: Optimized Performance

ChaNGa : Resultant Performance on Blue Waters

Charm++ Tutorial 28

Charm++ Tutorial

• Highly clustered
• Maximum request per

processor: > 30K

Clustered Dataset - Dwarf

• Idle time due to message
delays

• Also, load imbalances:
solved by Hierarchical
balancers

29

Charm++ Tutorial

Solution: Replication

• Replicate tree nodes to distribute requests
• Requester randomly selects a replica

PE 1 PE 2 PE 3 PE 4

30

Charm++ Tutorial

Replication Impact

• Replication distributes
requests

• Maximum request reduced
from 30K to 4.5K

• Gravity time reduced from 2.4 s to
1.7 s, on 8k

31

Charm++ Tutorial 32

Multiple time-stepping!
• Our scientist collaborators suggest an algorithmic optimization:
– Don’t move slow-moving particles every step

• i.e. don’t calculate forces on them either
– In fact, make many (say 5) categories (rungs) of particles based on their

velocities
– Rung sequence (with 5 rungs)

• 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0
• Rung 0: all particles, Rung 4: fastest-moving particles

– Each tree-piece object now presents a different load when different “rungs”
are being calculated

Charm++ Tutorial 33

Multiple time-stepping!
• Load (for the same object) changes across rungs

– Yet, there is persistence within the same rung!
– So, specialized phase-aware balancers were developed

Charm++ Tutorial 34

Multi-stepping tradeoff
• Parallel efficiency is lower, but performance is improved

significantly

Single Stepping Multi Stepping

Remote Gravity
Ewald

SPH Density

Local Gravity

EOS

SPH
Pressure

Overlapping of Phases

Charm++ Tutorial 36

ChaNGA Design and Optimization: Lessons

• Many details in: https://charm.cs.illinois.edu/papers/14-30
• Rethink relationship to processors
– Oct-trees, overdecomposition

• Don’t take performance and scaling losses for granted
– Rage against them!
– Detailed analysis , in part with projections, helps
– Request-clustering was unexpected problem, needed a clever solution

• Other optimizations not discussed here:
– Task-based within node balancing
– SMP cache (more in ParaTreeT)

https://charm.cs.illinois.edu/papers/14-30

Episimdemics
• Simulation of spread of contagion
– Code by Madhav Marathe, Keith Bisset, .. Vtech
– Original was in MPI

• Converted to Charm++
– Benefits: asynchronous reductions improved performance considerably

37Charm++ Tutorial

38Charm++ Tutorial

39Charm++ Tutorial

OpenAtom
Car-Parinello Molecular Dynamics
NSF ITR 2001-2007, IBM, DOE,NSF

Charm++ Tutorial 40

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

Recent NSF SSI-SI2 grant
With

G. Martyna (IBM)
Sohrab Ismail-Beigi

Using Charm++ virtualization, we can efficiently scale small (32 molecule)
systems to thousands of processors

Decomposition and Computation Flow

Charm++ Tutorial 43

Topology Aware Mapping of Objects

Charm++ Tutorial 44

Improvements by topological aware mapping of
computation to processors

Charm++ Tutorial 45

The simulation of the left panel, maps computational work to processors taking the network connectivity into account while
the right panel simulation does not. The “black’’ or idle time processors spent waiting for computational work to arrive on
processors is significantly reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the degree of freedom
needed for flexible mapping

Mini-App Features Machine Max cores

AMR Overdecomposition, Custom
array index, Message priorities,

Load Balancing, Checkpoint
restart

BG/Q 131,072

LeanMD Overdecomposition, Load
Balancing, Checkpoint restart,

Power awareness

BG/P
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition, Message
priorities, Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-decomposition, Load
Balancing

Hopper 8,000

PDES Overdecomposition, Message
priorities, TRAM

Stampede 4,096

MiniApps

Charm++ Tutorial 48

Available at: http://charmplusplus.org/miniApps/

Mini-App Features Machine Max cores

1D FFT Interoperable with MPI BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular Solver SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps

Charm++ Tutorial 49

Charm++ Tutorial 50

A recently published book
surveys seven major
applications developed using
Charm++

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

http://charm.cs.illinois.edu/

	Charm++ Applications as case studies
	NAMD: Biomolecular Simulations
	NAMD: Molecular Dynamics
	Further MD
	Traditional Approaches: non isoefficient
	Spatial Decomposition Via Charm
	
	Parallelization using Charm++
	Amdahl and variants
	Grainsize and Amdahls’s law
	Grainsize analysis
	Fine Grained Decomposition on BlueGene
	Grainsize reduced
	Integration overhead analysis
	Integration overhead example:
	Integration overhead: After
	Improved Performance Data
	Slide 18
	Slide 19
	Slide 20
	Grainsize example: NAMD
	NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, an
	Recent success with NAMD:
	ChaNGa: Parallel Gravity
	ChaNGa: Parallel Gravity (2)
	Slide 26
	ChaNGa: Optimized Performance
	ChaNGa : Resultant Performance on Blue Waters
	Clustered Dataset - Dwarf
	Solution: Replication
	Replication Impact
	Multiple time-stepping!
	Multiple time-stepping! (2)
	Multi-stepping tradeoff
	Overlapping of Phases
	ChaNGA Design and Optimization: Lessons
	Episimdemics
	Slide 38
	Slide 39
	Slide 40
	Decomposition and Computation Flow
	Topology Aware Mapping of Objects
	Improvements by topological aware mapping of computation to pro
	MiniApps
	More MiniApps
	Slide 50

