
Charm++ Applications 
as case studies

Only brief overview today
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NAMD: Biomolecular Simulations

• Collaboration with K. Schulten
• With over 50,000 registered 

users
• Scaled to most top US 

supercomputers
• In production use on 

supercomputers and clusters 
and desktops

• Gordon Bell award in 2002

Recent success: Determination of 
the structure of HIV capsid by 
researchers including Prof Schulten 
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NAMD: Molecular Dynamics

• Collection of [charged] atoms, with bonds
• Newtonian mechanics
• At each time-step
– Calculate forces on each atom 

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Calculate velocities and advance positions
• 1 femtosecond time-step, millions needed!
• Thousands of atoms (1,000 - 100,000)

Collaboration with K. Schulten, R. Skeel, and coworkers
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Further MD
• Use of cut-off radius to reduce work
– 8 - 14 Å
– Faraway charges ignored!

• 80-95 % work is non-bonded force computations
• Some simulations need faraway contributions
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Traditional Approaches: non isoefficient

• Replicated Data:
– All atom coordinates stored on each processor

• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute  force matrix to processors
– Matrix is sparse, non uniform,
–  C/C Ratio: sqrt(P)
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Spatial Decomposition Via Charm

•Atoms distributed to cubes based on 
their location
• Size of each cube :

• Just a bit larger than cut-off radius
• Communicate only with neighbors
• Work: for each pair of nbr objects

•C/C ratio: O(1)
•However: 

• Load Imbalance
• Limited Parallelism

Cells, Cubes or“Patches”

Charm++ is useful to handle this
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Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

•Now, we have many objects 
to load balance:

• Each diamond can be  
assigned to any proc.

•  Number of diamonds (3D): 
– 14·Number of Patches

–2-away variation:
–Half-size cubes
– 5x5x5 interactions

–3-away interactions: 7x7x7



Parallelization using Charm++
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Amdahl and variants

• The original Amdahl’s law, interpreted as:
– If there is a x% sequential component, speedup can’t be more than 100/x.

• Variations:
– If you decompose a problem into many parts, then the parallel time cannot 

be less than the largest of the parts
– If the critical path through a computation is T1, you cannot complete in less 

time than T, no matter how many processors you use
– …
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Grainsize and Amdahls’s law
• A variant of Amdahl’s law, for objects:
– The fastest time can be no shorter than the time for the biggest single 

object!
• How did it apply to us?
– Sequential step time was 57 seconds
– To run on 2k processors, no object should be more than 28 msecs. 
– Analysis using our tools showed:
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Grainsize analysis

Grainsize distribution
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Solution: 
Split compute 
objects that may 
have too much 
work:
using a heuristics 
based on number of 
interacting atoms

Problem
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Fine Grained Decomposition on BlueGene
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Grainsize reduced

Grainsize distribution after splitting
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Integration overhead analysis

integration

Problem: integration time had doubled from sequential run
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Integration overhead example:
• The visualization showed: the overhead was associated with 

sending messages.
• Many cells were sending 30-40 messages.
– The overhead per message was too high
– Code analysis: memory allocations!
– Identical message being sent to 30+ processors.

• Multicast support was added to Charm++
– Mainly eliminates memory allocations
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Integration overhead: After
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Improved Performance Data

Speedup on Asci Red
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700 
VPs

192 + 
144 VPs

30,000 VPs

NAMD Parallelization using Charm++ : PME

These 30,000+ Virtual Processors (VPs)  are mapped to real 
processors by charm runtime system
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Whereas on BlueGene/L (recent 
tuning), 1024 procs

Shallow valleys, high peaks, 
nicely overlapped PME
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On Cray XT3, 512 processors



Grainsize example: NAMD
• High performing examples (objects are the work-data units in Charm+

+):
• On Blue Waters, 100M atom simulation  
– 128K cores (4K nodes): 5,510,202 objects 

• Edison, Apoa1 (92K atoms)  
– 4K cores:  33,124 objects

• Hopper, STMV (1M atoms)
– 15,360 cores:  430,612 objects
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NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and Mira IBM Blue Gene/Q for 
21M and 224M atom benchmarks



Recent success 
with NAMD: 
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Coronavirus 
simulations

 Credit: Amaro Lab UCSD


2021/11/16 10:00:59



ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of Washington
• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp
– Geometry has better aspect ratios, so 

you “open” up fewer nodes
– But is not used because it leads to bad 

load balance
– Assumption: one-to-one map between 

sub-trees and PEs
– Binary trees are considered better load 

balanced
Charm++ Tutorial 24

With Charm++: Use Oct-Tree, and let Charm++ 
map subtrees to processors

Evolution of Universe and Galaxy 
Formation
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ChaNGa: Parallel Gravity
• Collaborative project (NSF)

– with Tom Quinn, Univ. of 
Washington

• Gravity, gas dynamics
• Barnes-Hut tree codes

– Oct tree is natural decomp
– Geometry has better aspect 

ratios, so you “open” up fewer 
nodes

– But is not used because it leads 
to bad load balance

– Assumption: one-to-one map 
between sub-trees and PEs

– Binary trees are considered 
better load balanced

With Charm++: Use Oct-Tree, 
and let Charm++ map subtrees 
to processors

Evolution of Universe and Galaxy 
Formation



Charm++ Tutorial 26

ChaNGa: Cosmology Simulation

• Tree: Represents 
particle distribution

• TreePiece: 
object/chares 
containing particles

Collaboration with Tom 
Quinn UW
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• Asynchronous, highly overlapped, phases
• Requests for remote data overlapped with local 

computations

ChaNGa: Optimized Performance



ChaNGa : Resultant Performance on Blue Waters
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• Highly clustered
• Maximum request per 

processor: > 30K

Clustered Dataset - Dwarf

• Idle time due to message 
delays

• Also, load imbalances: 
solved by Hierarchical 
balancers

29
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Solution: Replication

• Replicate tree nodes to distribute requests
• Requester randomly selects a replica

PE 1 PE 2 PE 3 PE 4

30
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Replication Impact

• Replication distributes 
requests

• Maximum request reduced 
from 30K to 4.5K

• Gravity time reduced from 2.4 s to 
1.7 s, on 8k

31
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Multiple time-stepping!
• Our scientist collaborators suggest an algorithmic optimization:
– Don’t move slow-moving particles every step

• i.e. don’t calculate forces on them either
– In fact, make many (say 5) categories (rungs) of particles based on their 

velocities
– Rung sequence (with 5 rungs) 

• 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0
• Rung 0: all particles, Rung 4: fastest-moving particles

– Each tree-piece object now presents a different load when different “rungs” 
are being calculated
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Multiple time-stepping!
• Load (for the same object) changes across rungs

– Yet, there is persistence within the same rung!
– So, specialized phase-aware balancers were developed
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Multi-stepping tradeoff
• Parallel efficiency is lower, but performance is improved 

significantly

Single Stepping Multi Stepping



Remote Gravity
Ewald

SPH Density

Local Gravity

EOS

SPH
Pressure

Overlapping of Phases
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ChaNGA Design and Optimization: Lessons

• Many details in: https://charm.cs.illinois.edu/papers/14-30
• Rethink relationship to processors
– Oct-trees, overdecomposition

• Don’t take performance and scaling losses for granted
– Rage against them!
– Detailed analysis , in part with projections, helps
– Request-clustering was unexpected problem, needed a clever solution

• Other optimizations not discussed here: 
– Task-based within node balancing
– SMP cache (more in ParaTreeT)

https://charm.cs.illinois.edu/papers/14-30


Episimdemics
• Simulation of spread of contagion
– Code by Madhav Marathe, Keith Bisset, .. Vtech
– Original was in MPI

• Converted to Charm++
– Benefits: asynchronous reductions improved performance considerably
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OpenAtom
Car-Parinello Molecular Dynamics
NSF ITR 2001-2007, IBM, DOE,NSF 
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Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

Recent NSF SSI-SI2 grant
With

G. Martyna (IBM) 
Sohrab Ismail-Beigi

Using Charm++ virtualization, we can efficiently scale small (32 molecule) 
systems to thousands of processors



Decomposition and Computation Flow
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Topology Aware Mapping of Objects
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Improvements by topological aware mapping of 
computation to processors
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The simulation of the left panel, maps computational work to processors taking the network connectivity into account while 
the right panel simulation does not. The “black’’ or idle time processors spent waiting for computational work to arrive on 
processors is significantly reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the degree of freedom 
needed for flexible mapping 



Mini-App Features Machine Max cores

AMR Overdecomposition, Custom 
array index, Message priorities, 

Load Balancing, Checkpoint 
restart

BG/Q 131,072

LeanMD Overdecomposition, Load 
Balancing, Checkpoint restart, 

Power awareness

BG/P 
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition, Message 
priorities, Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-decomposition, Load 
Balancing

Hopper 8,000

PDES Overdecomposition, Message 
priorities, TRAM

Stampede 4,096

MiniApps
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Available at: http://charmplusplus.org/miniApps/



Mini-App Features Machine Max cores

1D FFT Interoperable with MPI BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P 
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular Solver SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps
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A recently published book
surveys seven major 
applications developed using 
Charm++

More info on Charm++: 
http://charm.cs.illinois.edu
Including the miniApps

http://charm.cs.illinois.edu/
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