
MODULES AND LIBRARIES

Charm++ Tutorial

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable
Objects

Modules and libraries
• So far, our programs had one .ci file, and one

module in it

• Modular programming requires that we should be
able to factor the program into multiple modules

• The final program is a composition of multiple
modules

• In case of libraries, these are modules someone
else wrote earlier that we want to use in our
application
– It may even be available as a (say, proprietary)

binary
– Of course, with the necessary header files

• Today, we learn how to use those

Charm++ Tutorial

Multiple modules
• A program with multiple modules
– Can be in a single .ci file, but typically, each module has

its own .ci file
• You have to include in your .ci file, as extern, the

module you plan to use

Charm++ Tutorial

Reachability
• Every module that you want to use must:
– Either : be included via a chain of “extern module” commands starting

from the mainmodule
– Or: be listed in a “–module modulename” phrase as a link-time option.

Charm++ Tutorial

Separately compiled libraries
• The decl.h file of the imported (library) module must be provided

by the library writer to the application (i.e. importing module)
– Along with a .h file, as usual in sequential programs

• But the .C file doesn’t need to be provided.

Charm++ Tutorial

Matching size of the library array
• Suppose you want to use a library for sorting elements in a chare

array
– The client (your application) has a 1D chare array App of size N
– You want the library to also have a 1D array of the same size
– You also want the correspondng elements to be on the same processor
– So: you can hand over your elements to the corresponding element of the

library array locally, and get back the sorted result from it

Charm++ Tutorial

Bound arrays
• You can bind one chare array to another
– That means: the corresponding elements of the 2 arrays live on the same

processor.
– If the “parent” array elements migrates, any array element bound to it also

migrates with it
– You can make regular (without proxy) sequential method calls between

the corresponding elements (via ckLocal() call)

Charm++ Tutorial

Syntax for creating a bound array

• We use the “options” we learned before
• The bound array (sometimes called the shadow

array) is created *after* the parent array is created.
• The chare types of the two arrays can be different
– Typically, they are different

Charm++ Tutorial

Using bound arrays in libraries
• To use a parallel “sort” library,
– you create your 1D chare array,
– Pass its proxy (in your main chare) to the initialization call of the sort library
– Which will create its array bound to your array

Charm++ Tutorial

ckLocal()
• If a chare is on the same processor as you,
– you can get a (regular, C++) pointer to it, and
– invoke methods on it directly
– (or even access its public data members)

• How?
– x = A[i].ckLocal()
– A is a proxy to a 1D chare array
– x gets pointer to a C++ object
– What if the A[i] is not on your processor?

• This call returns NULL

Charm++ Tutorial

	Modules and libraries
	Modules and libraries (2)
	Multiple modules
	Reachability
	Separately compiled libraries
	Matching size of the library array
	Bound arrays
	Syntax for creating a bound array
	Using bound arrays in libraries
	ckLocal()

