MODULES AND LIBRARIES

vroc



Example of library: data-balancing with prefix

Remember in our MP1 (from the course cs598Ivk)
— (data balancing using parallel prefix sum),
— We used parallel prefix to calculate which data goes to which processor.

Ideally, the prefix should have been a separate library
— After all it has many other uses

Instead, we just merged the application code and prefix algorithm
In one module

Now, let us do that properly

PPL

UI10C




How to write prefix sum as a library

 \What is the interface we want:

— It gets initialized as a bound array to the application’s array
* Meant to be used with 1D chare array as clients (caller, application)
* Regular function call.. Say: prefixInit(clientArrayProxy)

— Each time we need to calculate prefix sum, the library should be called via a local call
with the local value
* We assume it can be called multiple times
* Assuming a single-value prefix sum. We can generalize to vecs

— The call won't return, but later on, another entry method of the application will called
* (Why not a function call?)
* How to make prefix call application’s entry method?
— Remember when prefix library is written, it doesn’t know about any application that’s using it
— 3o, can’'t use any name from the application

— Callback! That'’s flexible. Called can be threaded, or sdag, or...
il
L] -/&




MR

FI

T L%LA“’

EE e
M |
\

NN

Initialization and usage

* |nitialization: From the main chare of the application,

— after creating the application’s 1D array (that will be the caller), with

proxy in A
— Call function prefixInit(A)
* This will create a bound chare array in prefixLib, and return its proxy, say /b

* Call: (this can be made multiple times)

— libPtr = lib[thisIndex].ckLocal();

— libPtr->computePrefix(myVal, callBack);

* | know ckLocal() won’t return NULL.: its bound to me

PPL

UI10C




F ]
M

EE BE
, ]
1§

What to do when you migrate”?

With a bound array, you can be sure that the “shadow” chare in
prefix library will migrate with you.

But the pointer will be different

If you use it via ckLocal() as in previous slide, there is no problem

But, if you have stored the pointer, you have to re-obtain it

— That is where the migration constructor is useful
* App::App(CkMigrateMessage *m)
— { libPtr = lib[thisIndex].ckLocal() ; }

* or you can use just after AtSync(), but this may do it unnecessarily, because you might
not have migrated

PPL

UI10C




Exercise

* Make the above design work for your MP1 prefix-
based data balancing

* For better understanding, do this in 2 steps

— First, write a program with 2 modules in the same folder
* Make sure prefixLib doesn’t use any name from dataBalancer

— Next, do it with both modules in separate folders, AND
precompile the library..

* What information about prefixLib do you have to provide to the
dataBalancer application ? In what form? .h? .ci?

prefixLib.decl.n? What information is minimal necessary? What
documentation should you provide?

L
M




	Modules and libraries
	Example of library: data-balancing with prefix
	How to write prefix sum as a library
	Initialization and usage
	What to do when you migrate?
	Exercise

