
MODULES AND LIBRARIES

Charm++ Tutorial

Example of library: data-balancing with prefix
• Remember in our MP1 (from the course cs598lvk)
– (data balancing using parallel prefix sum),
– We used parallel prefix to calculate which data goes to which processor.

• Ideally, the prefix should have been a separate library
– After all it has many other uses

• Instead, we just merged the application code and prefix algorithm
in one module

• Now, let us do that properly

How to write prefix sum as a library
• What is the interface we want:

– It gets initialized as a bound array to the application’s array
• Meant to be used with 1D chare array as clients (caller, application)
• Regular function call.. Say: prefixInit(clientArrayProxy)

– Each time we need to calculate prefix sum, the library should be called via a local call
with the local value
• We assume it can be called multiple times
• Assuming a single-value prefix sum. We can generalize to vecs

– The call won’t return, but later on, another entry method of the application will called
• (Why not a function call?)
• How to make prefix call application’s entry method?

– Remember when prefix library is written, it doesn’t know about any application that’s using it
– So, can’t use any name from the application
– Callback! That’s flexible. Called can be threaded, or sdag, or…

Initialization and usage
• Initialization: From the main chare of the application,
– after creating the application’s 1D array (that will be the caller), with

proxy in A
– Call function prefixInit(A)

• This will create a bound chare array in prefixLib, and return its proxy, say lib

• Call: (this can be made multiple times)
– libPtr = lib[thisIndex].ckLocal();
– libPtr->computePrefix(myVal, callBack);

• I know ckLocal() won’t return NULL: its bound to me

What to do when you migrate?
• With a bound array, you can be sure that the “shadow” chare in

prefix library will migrate with you.
• But the pointer will be different
• If you use it via ckLocal() as in previous slide, there is no problem
• But, if you have stored the pointer, you have to re-obtain it
– That is where the migration constructor is useful

• App::App(CkMigrateMessage *m)
– { libPtr = lib[thisIndex].ckLocal() ; }

• or you can use just after AtSync(), but this may do it unnecessarily, because you might
not have migrated

Exercise
• Make the above design work for your MP1 prefix-

based data balancing
• For better understanding, do this in 2 steps
– First, write a program with 2 modules in the same folder

• Make sure prefixLib doesn’t use any name from dataBalancer
– Next, do it with both modules in separate folders, AND

precompile the library..
• What information about prefixLib do you have to provide to the

dataBalancer application ? In what form? .h? .ci?
prefixLib.decl.h? What information is minimal necessary? What
documentation should you provide?

	Modules and libraries
	Example of library: data-balancing with prefix
	How to write prefix sum as a library
	Initialization and usage
	What to do when you migrate?
	Exercise

