
CHARM++ EXAMPLES

1

2

A few examples
• Some with code and some top level designs
1. How to find median of data spread out over a chare array
2. How to send a small number of “wrong” elements to their correct

homes in an otherwise sorted array
3. How to sort elements in a chare array:

1. Using a parallel version of quick sort (may skip)
2. Using histogram sort

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

3

Discussion and Idea for median finding
• N chares in a chare array
• Each containing a set of numbers
• Median:

– a number X such that about half of
all the numbers are smaller than it
and half larger

• How to find the median?
• Idea:

– Main or chare0 makes a guess
(how?)

– Broadcast to everyone
– Everyone counts smaller/larger
– Reduce to main
– Main updates the guess and repeats

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

Chare 0

Chare 1

Chare 2
Chare 3

Chare 4

Chare 5

Chare N-1

4

Median Example: median.ci

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

mainmodule Median {

 readonly CProxy_Main mainProxy;

 mainchare Main {

 entry Main(CkArgMsg* m);

 entry [reductiontarget] void informRoot(int counts[2]);

 entry void computeMedian(){ … }

 };

 array [1D] Partition {

 entry Partition();

 entry void queryCounts(double median);

 };

};

entry void computeMedian(){

 while(true){

 serial{ partition_array.queryCounts(median); }

 when informRoot(int counts[]) serial {

 int nSmaller = counts[0];

 int nLarger = counts[1];

 double error =

(double)abs(nSmaller-nLarger)/(nSmaller + nLarger);

 if(error < 0.01){

 CkPrintf("\nMedian = %lf (in %d iterations)\n", median, iter);

 CkExit(); }

 if(nSmaller > nLarger)

 max_range = median;

 else

 min_range = median;

 median = (min_range+max_range)/2;

 iter++;

 }

 }

 }

5

Median Example: median.C I

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

#include "Median.decl.h”

/*readonly*/ CProxy_Main mainProxy;

/*readonly*/ int K;

class Main: public CBase_Main { Main_SDAG_CODE

private:

 CProxy_Partition partition_array;

 double median, min_range, max_range;

 int iter;

public:

 Main(CkArgMsg* m) {

 iter = 0, min_range = 0.0, max_range = 1.0;

 K = atoi(m->argv[2]);

 median = atof(m->argv[3]); // initial guess provided on command line

 mainProxy = thisProxy;

 partition_array = CProxy_Partition::ckNew(atoi(m->argv[1]));

 mainProxy.computeMedian();

 }

};

6

Median Example: median.C II

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

class Partition: public CBase_Partition {

 public:

 double *numbers;

 Partition(int guess) {

 numbers = new double[K];

 srand48(time(NULL));

 for(int i=0;i<K;i++)

 numbers[i] = drand48();

 }

 void queryCounts(double median){...}

};

#include "Median.def.h"

void queryCounts(double median){

 int counts[2]; counts[0] = counts[1] = 0;

 for(int i=0;i<K;i++){

 if(numbers[i]<median)

counts[0]++; // # smaller than median

 else

counts[1]++; // # larger than median

 }

 contribute(2*sizeof(int), counts, CkReduction::sum_int,

 CkCallback(CkReductionTarget(Main, informRoot), mainProxy));

 }

7

Relaxing an assumption
• We assumed in the above code:
– The main chare knows the smallest and largest possible values
– Under what conditions is that valid or efficient?

• How can we relax that assumption?
• Discuss

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

8

Improving Our Median Program further
• How can we improve its efficiency?
• What are the costs?
– Discuss
– Number of rounds
– Cost of each round

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

9

Improving Our Median Program further
• How can we improve its efficiency?
• What are the costs?
• For each probe, the queryCounts method has to loop through the entire

array
– What if we pre-sort the array?
– What if we partially sort the array (and keep improving it at every probe)

• How to improve the initial guess?
– So as to reduce the number of broadcast-reduction iterations

• How to get more information with each reduction?
– After all the cost of reduction doesn’t change much if we reduce a small vector

instead of just 2 counts
– Histogramming

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

10

A somewhat related problem
• Consider a situation in which a chare array is sorted

– Values are between 0 and M, long integers
– Without worrying too much about data balance
– The data distribution is uniform, so, we decide that chare I will hold values

between (I*M/P, (I+1)*M/P -1)
• Where P is the number of chares in the array

• Now, each chare generates a few new items
– Their value may be anywhere in the range 0..M
– Let us assume the “few” is really small, like 5 or 10
– And P is large (say > 10,000)
– Also, the total data on each chare is large.. But that’s immaterial

• How can we send them to their correct home places?

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

11

Send a few stragglers home
• Easy enough:
• Just send a message for each new value to its home
– (it is easy to calculate home)
– Optimize: don’t send message to yourself
– Optimize?: combine messages going to the same processor?

• Rare so we will ignore for now

• The problem?
– How do we know when we are done
– So, each chare can start the next phase of computation, for example

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

12

Quiescence Detection
• In Charm++, quiescence is defined as the state in which no

processor is executing any entry method, no messages are awaiting
processing, and there are no messages in-flight

• Charm++ provides a method to detect quiescence:
• From any chare, invoke CkStartQD(callback);
• The system is always doing the background bookkeeping so it can

detect quiescence
– The call just starts a low-overhead distributed algorithm to detect the

condition
– It runs concurrently with your application
– So, call CkStartQD as late as possible to reduce the overhead

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

13

Quiescence Detection applied to stragglers
• For our problem,
– we can have one of the chares (say with index 0) call CkStartQD after it

has done its sending
– With a callback that broadcasts to every chare in the array that quiescence

has been attained
– This means all the stragglers have reached their home

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

14

Histogram sort
• Idea: extend the median finding algorithm
• If we have P chares, we need to find P-1 separator keys

– I.e. values that act as (or define) boundaries between chares
– Such that everyone has an (approximately) equal number of values

• We can
– make a guess (called a probe)
– Collect a histogram (counts)
– Correct the guesses and prepeat

• When adequate separators are identified:
– Everyone sends the data to where it belongs
– Use quiescence detection to make sure all the data is received
– Sort locally

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

15

Histogram sort: interesting optimizations
• Some optimizations to this algorithm exploit charm++’s message

driven execution
• E.g. Some chares’ separators may be found early on:

– Everyone can start sending their values in parallel with histogramming for
other chares

• Histogramming and initial local sorting may be overlapped
• Histogram may be decomposed into multiple portions

– So that it can be pipelined
– While root is preparing the next guess for one ection, the other section is

doing it distributed histogramming

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects

See paper by Vipul Harsh: https://charm.cs.illinois.edu/papers/19-02

	Charm++ Examples
	A few examples
	Discussion and Idea for median finding
	Median Example: median.ci
	Median Example: median.C I
	Median Example: median.C II
	Relaxing an assumption
	Improving Our Median Program further
	Improving Our Median Program further (2)
	A somewhat related problem
	Send a few stragglers home
	Quiescence Detection
	Quiescence Detection applied to stragglers
	Histogram sort
	Histogram sort: interesting optimizations

