
L.V.Kale 1

GPUs and General Purposing of GPUs :
• Graphics Processing Unit (GPU)
• Original purpose: high speed rendering(?) i.e. video games, etc
• Optimized for being good at math
• Result: High memory BW and many “cores”
• Brook Streaming Language from Stanford

• Ian Buck et al paper is worth a read
• The idea of specialized kernels

• Running on specialized devices

• NVIDIA and AMD (and Intel’s integrated graphics)
• Programming: CUDA, OpenCL, and OpenMP

In this paper, we present Brook for GPUs, a
system for general-purpose computation on
programmable graphics hardware. Brook
extends C to include simple data-parallel
constructs, enabling the use of the GPU as
a streaming coprocessor.

L.V.Kale 2

Holds Global Memory and
Constant Memory

Schematic GPGPUs

Each SM is
like a Vector
Core

SM SMSM

Cache for Constant Memory

Fast DRAM

GPGPU Chip
ALU Registers

Streaming Multiprocessor

SPs

Scratchpad Memory

AKA Shared Memory

The Device

L.V.Kale 3

CUDA

• We will present a very simple, over-simplified, overview
• Explicit resource-aware programming
• What you specify

• Data transfers
• Data parallel kernel/s, expressed in form of threads

• Each thread does the action specified by the kernel
• The total number of threads are grouped into teams called “blocks”
• Kernel calls specify the number of blocks , and number of threads per block

L.V.Kale 4

Programming Model Overview
• Host (serial)

• Launches device functions
(parallel)

• Control can return
asynchronously

• Memory?
• Device memory
• “Unified” memory

• Overlap
• It is possible to overlap data

transfer of one kernel with
computation of another

• Serial

• Parallel

• Serial

L.V.Kale 5

#include <stdio.h>

void hello() {

 printf(“Hello, world!\n”);

}

int main() {

 hello();

}

Simple CUDA Program
$ gcc hello.c

$./a.out

Hello, world!

L.V.Kale 6

#include <stdio.h>

__global__

void hello() {

 printf(“Hello, world!\n”);

}

int main() {

 hello<<<1,1>>>();

}

Simple CUDA Program
$ gcc hello.c

$./a.out

Hello, world!

$ nvcc hello.cu

$./a.out

Hello, world!

L.V.Kale 7

Blocks
• Basic parallel unit

• Threads in a block can
assume access to a common
shared memory region
(scratchpad).

• Analogous to processes

• Blocks grouped into grid

• Asynchronous

int main() {

 hello<<<128,1>>>();

}

$./a.out

Hello, world!

Hello, world!

…

Hello, world!

L.V.Kale 8

Threads
• Sub-division of a block

(shared memory)

• Analogous to OpenMP
threads

• Grouped into warps (shared
execution)

• Level of synchronization and
communication

int main() {

 hello<<<1,128>>>();

}

$ a./out

Hello, world!

Hello, world!

…

Hello, world!

L.V.Kale

Warps
• Groupings of threads

• All execute same instruction
(SIMT)

• One miss, all miss

• Thread divergence, No-Ops

• Analogous to vector
instructions

• Scheduling unit

9

L.V.Kale 10

Combining Blocks, Warps, and Threads

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

KernelFunc<<<3,6>>>(…);

Block Dimension = 6

For this picture, assume a warp
has 3 threads.. (in reality, its
almost always 32.. It’s a device
dependent parameter)

If you specify blocksize that’s not a multiple of warpsize, the system will leave some cuda cores in a warp idle)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Thread Index

Global Index

Block 1 Block 2 Block 3

Warp 1 Warp 2

Number of Blocks Number of Threads per Block

L.V.Kale 11

Illustrative Example
__global__

void vecAdd(int* A, int* B, int* C) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 C[i] = A[i] + B[i];

}

…

int main() {

 // Unified memory allocation

 vecAdd<<<VEC_SZ/512,512>>>(A, B, C);

}
Number of Blocks

Number of Threads
per Block

blockIdx.x is my
block’s serial number

blockDim.x is the
number of threads
per block

threadIdx.x is my
thread’s id in my
block

VEC_SZ/512

12

Using CUDA kernels from Chares
• Charm++ is not a compiler.. So it won’t write CUDA code for you

• OpenACC, OpenMP, … will write kernels for you
• So the main question is how can you fire CUDA kernels and manage

dependencies
• Of course, you could just use CUDA as it is

• But: when you fire a kernel, then, you are blocking the processor and not allowing
other chares to make progress

• You first need an API/Abstraction to fire kernels asynchronously and get
callbacks when they are done

• This is provided by HAPI (Hybrid API)
• In addition: allocate/free memory on device, and
• Support for transferring data from/to device (instead of bringing it to host DRAM)

L.V.Kale

Following Slides by Jaemin Choi

L.V.Kale 13

So, to use CUDA kernels in Charm++
• You write your own kernels
• Allocate cuda streams using HAPI calls
• Allocate device memory using HAPI calls
• Fire kernels on specific streams that you wish to use
• Asynchronous Completion support: Insert callbacks into the streams

so your chare can be notified of completion using HAPI calls
• Use device-to-device communication using our layer:

• CkDeviceBuffer and post method(GPU communication API)
• Channel API

Following Slides by Jaemin Choi

Automatic Computation-Communication

Overlap

Exploiting Overlap on GPUs

15

• Computational work offloaded to the GPU

• Initiation of kernels (+ data transfers) & subsequent continuation on the host CPU (PE)

• Little overlap with naive implementation... Why?

Same PE
& GPU

Chare A

Chare B

Computation Communication

Time

Initiation &
Continuation

GPU

Need for Asynchrony

16

• Using CUDA stream synchronization to wait for kernel completion

• Slow synchronization performance

• Prevents host scheduler from doing anything else

• Limits amount of attainable overlap

• Other asynchronous completion notification mechanisms from CUDA?

• CUDA Callback: CUDA-generated thread collides with Charm++ runtime threads, does not have access to

Charm++ functionalities and data structures

• CUDA Events: How should the user poll the status of the events?

• Need support from the Charm++ runtime system

HAPI Callback: Asynchronous Completion Notification

17

• Provided in the Hybrid API (HAPI) module of Charm++

• hapiAddCallback(cudaStream_t stream, CkCallback cb)

• Tell Charm++ runtime to execute Charm++ callback (entry method) when previous operations

in the CUDA stream complete

• Two mechanisms based on CUDA Callback & Events

CUDA Event-Based HAPI Callback

18

• CUDA Event-based

• Create and add CUDA event

• Scheduler polls for status of CUDA event (poll frequency configurable)

• When CUDA event completes, execute Charm++ callback (entry method)

• Faster performance vs. CUDA Callback-based, used as the default

Charm++ PE

CUDA event
completeTime

Execute Charm++
callback (entry
method)

Add CUDA
event

Poll event
status

Need for Communication Priority

19

• With overdecomposition, communication and related operations (e.g., packing/unpacking

kernels, host-device transfers) may be delayed

• Need to prioritize communication-related operations

4 chares (4 streams)
per GPU

Time

CUDA Streams with Priority

20

• Use a separate high priority CUDA stream for communication-related operations

• Reduces delay in initiating asynchronous communication

• Reduces idle time & increases compute utilization

4 chares (8 streams)
per GPU

Time

L.V.Kale 21

Streams scheme
• If you use the previous scheme of 3 streams per chare and if you have

a large number of chares per process, you may cauae overheads due
to multiplexing of streams on system resources

• Consider the schemes of previous slides as suggestions for best
practices, and vary the number of streams accordingly

• Experiment with them

GPU-Aware Communication

GPU-Aware Message-Driven Execution

23

• Charm++ messages are constructed in host memory

• Metadata + User payload

• If user payload is in GPU memory, it needs to be moved to host memory beforehand

• Schedulers run on host CPUs

• Separate metadata and GPU payload!

• Metadata needed for message-driven execution is sent without the payload

• GPU payload is sent separately

Host
memory

GPU
memory

Host-
staging

GPU-
aware

Metadat
a

Payloa
d

GPU Messaging API

24

• Want to send buffer in GPU memory

• Wrap inside CkDeviceBuffer to notify runtime system

that this is a GPU buffer

• Runtime sends message with metadata, and separately

sends source GPU buffer

(both with UCX but different code paths)

• On host-side message arrival, post entry method is first

executed to determine destination GPU buffer

• Receive for incoming GPU buffer is posted

void Chare::foo() {
 // Invoke entry method with GPU payload
 chare_proxy[peer].bar(8,
CkDeviceBuffer(my_buf));
}

// Post entry method
void Chare::bar(int& count, double*& buf) {
 // Specify destination GPU buffer
 buf = recv_buf;
}

// Regular entry method
void Chare::bar(int count, double* buf) {
 // GPU buffer has been received
 some_kernel<<<...>>>(count, buf);
}

Send metadata message

Sender Chare

Receiver Chare

Send GPU buffer

Metadata message arrival

1 2

GPU buffer arrival

Post receive for GPU buffer4

3

5

Channel API

25

• GPU Messaging API suffers from additional latency due

to metadata message & delayed receive

• A channel is established between a pair of chares

• Use two-sided send & receive semantics on channel

• Instead of transferring execution flow, only transfer

data

• Charm++ callbacks can be passed for asynchronous

completion notification

• Improved performance with direct interface to UCX

void Chare::foo() {
 channel.send(buf, size,
CkCallbackResumeThread());
}

void Chare::bar() {
 channel.recv(buf, size,
CkCallbackResumeThread())
}

Sender Chare

Receiver Chare

Pingpong Performance

26

• Charm++ pingpong benchmark on 2 nodes of OLCF Summit (GPU source/destination buffers)

• Latency & bandwidth substantially improve with GPU-aware communication

• Results with AMPI, Charm4py and Jacobi3D proxy application in thesis

Latenc
y

Bandwid
th

Combining Overlap & GPU-Aware Communication

27

• Overdecomposition-driven automatic computation-communication overlap on GPUs

• Effective hiding of communication latency especially with weak scaling

• Limitations with strong scaling due to overheads associated with finer granularity

• Integrating GPU-aware communication into message-driven execution

• Improves raw communication performance

• Less effective with large messages, due to switching to host-staging

• Combine overlap & GPU-aware communication for performance synergy

• Hide as much communication as possible with automatic overlap

• Reduce exposed communication costs with GPU-aware communication

• Effective in both weak and strong scaling

Jacobi3D: Weak Scaling

28

• Big: Computation-communication overlap provides almost perfect weak scaling

• Best performing ODFs: ODF-4 for Charm-H, ODF-2 for Charm-D

• Small room for improvement with GPU-aware communication (Charm-D vs. Charm-H)

• CUDA-aware MPI doesn’t improve performance from 4 nodes due to pipelined host-staging protocol

Big: 1,536 x 1,536 x 1,536 per node Small: 192 x 192 x 192 per node

Jacobi3D: Weak Scaling

29

• Small: Performance gains from GPU-aware communication

• Overdecomposition does not improve performance (no automatic overlap)

• Due to fine-grained overheads with small problem size

• Issue with CUDA-aware IBM Spectrum MPI performance at large scale

Big: 1,536 x 1,536 x 1,536 per node Small: 192 x 192 x 192 per node

Jacobi3D: Strong Scaling

30

• Combination of overlap & GPU-aware communication provides the best performance and scalability

• Best performing ODF for Charm++ decreases with scale, due to finer granularity

• Charm-H: ODF-4 → ODF-2 → ODF-1, Charm-D: ODF-2

Global grid: 3,072 x 3,072 x 3,072

	GPUs and General Purposing of GPUs :
	Slide 2
	CUDA
	Programming Model Overview
	Simple CUDA Program
	Simple CUDA Program (2)
	Blocks
	Threads
	Warps
	Combining Blocks, Warps, and Threads
	Illustrative Example
	Using CUDA kernels from Chares
	So, to use CUDA kernels in Charm++
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Streams scheme
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

