
1Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Projections – A Performance
Tool for Charm++ Applications

Chee Wai Lee
PPL, UIUC

2Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Tutorial Outline
● General Introduction
● Instrumentation
● Trace Generation
● Performance Analysis using Projections
● Using Projections effectively

3Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

General Introduction

● Introduction to Projections

● The Basic Charm++ Model

● NAMD as a case study application

4Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Projections
● Projections is a performance tool designed

for use with Charm++.
● Trace-based, post-mortem human-centric

analysis.
● Supports highly detailed traces, summary

formats and a flexible user-level API.
● Java-based visualization tool for

presenting performance information

5Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

What you will need
● A version of Charm++ built without the

CMK_OPTIMIZE flag. (Note: This tends to be the
default build)

● Java Runtime 1.3.1 or higher
● Projections Visualization binary.

– Distributed with the Charm++ source. (in
tools/projections)

– Acquire a standalone Java archive
(projections.jar)

6Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

The Basic Charm++ Model
● Object-Oriented.

Chares encapsulate
data and entry
methods.

● Message-driven. An
entry method is
scheduled for
execution on a
processor when a
message arrives.

7Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

NAMD as a case study
● Spatial decomposition into

Patches (blue).

● Force decomposition into
“Computes” (magenta
diamonds)

● Different force types
(bonded, non-bonded, ...)

● Long-range electrostatics
computed using Particle
Mesh Ewald (PME) method.

8Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Instrumentation

● Basics
● Application Programmer Interface (API)

– User specific events

– Turning tracing on/off

9Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Instrumentation: Basics
● Nothing to do!
● The Charm++ runtime automatically

instruments entry method execution and
communication events. (as described in the Basic
Charm++ Model)

● In a majority of cases, this generates very
useful data for analysis yet introduces
minimal overhead/perturbation.

10Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Instrumentation: User Events
● If user-defined events are required, these

can be inserted into application code:
Register:

int traceRegisterUserEvent(char* EventDesc, int EventNum=-1)

Track a Point-Event:

void traceUserEvent(int EventNum)

Track a Bracketed-Event:

void traceUserBracketEvent(int EventNum, double StartTime, double
EndTime)

11Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Instrumentation:
Selective Tracing (1)

● API also exists for selective tracing of
application code. Why do we want this?

YES

NO

12Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Selective Tracing (2)

● Simple Interface, not so easy to use:
void traceBegin()

void traceEnd()

● Calls have per-processor effects, but is
called from entry methods encapsulated in
objects.

● Best place to make these calls are
at/around synchronization points.

13Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Selective Tracing Example
 // in the case when trace is off at the beginning,

 // only turn trace of from after the first LB to the firstLdbStep after

 // the second LB.

 // 1 2 3 4 5 6 7

 // off on Alg7 refine refine ... on

#if CHARM_VERSION >= 050606

 if (traceAvailable()) {

 static int specialTracing = 0;

 if (ldbCycleNum == 1 && traceIsOn() == 0) specialTracing = 1;

 if (specialTracing) {

 if (ldbCycleNum == 4) traceBegin();

 if (ldbCycleNum == 6) traceEnd();

 }

 }

#endif

14Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Trace Generation
● Build time options (tracing modules)

– summary (aggregated data)

– trace logs (event traces)

● Runtime options
– summary resolution control

– buffer control

– output control

– tracing control

15Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Build Options

● Link into application one or more modules
for tracing at various levels of detail:
– “-tracemode summary” for aggregated data.

– “-tracemode projections” for event traces.

16Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Runtime Options (1)

● General options:
– +traceoff tells the tracing framework not to record

events until it encounters a traceBegin() API call.

– +traceroot <dir> tells the tracing framework which
folder to write output to.

– +gz-trace tells the tracing framework to output
compressed data (default is text). This is useful on
extremely large machine configurations where the attempt to
write the logs for p processors would overwhelm the IO
subsystem.

17Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Summary runtime options

● +sumdetail – tells the framework to aggregate
data by entry method as well as time-intervals.
(normal summary data is aggregated only by time-interval)

● +numbins <k> – tells the framework to reserve
enough memory to hold information for <k> time-
intervals. (default is 10,000 bins)

● +binsize <duration> - tells the framework to
aggregate data such that each time-interval
represents <duration> seconds of execution time.
(default is 1ms)

18Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Event Trace Options

● +logsize <k> – tells the framework to
reserve enough buffer memory to hold <k>
events. (default is 1,000,000 events)

19Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Memory Usage

● What happens when we run out of
reserved memory?
– summary: doubles time-interval represented

by each bin, aggregates data into the first half
and continues.

– event traces: asynchronously flushes event
log to disk and continues.

20Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Memory Usage (2)

● Trade-offs to consider:
– Summary

● Frequency of data compaction.
● Performance data resolution.
● Memory usage (usually not a problem).

– Event Traces
● Frequency of data flushing (this usually perturbs

the application badly).
● Memory usage.

21Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Trace Generation: How to?

● Run your application normally (batch or
interactive).

● When run ends, you will find any number
of “.log”, “.sum”, “.sts” files generated in the
directory specified with +traceroot or where
your binary is located.

22Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Visualization: Basic Steps

● Run the script:

charm/tools/projections/bin/projections
● You may choose to supply the location for

a “.sts” file as an argument to tell the tool
to load performance data associated with
it.

23Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Visualization/Analysis Reference
Guide

24Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Analysis Techniques

● Zoom in/out to find potential problem
spots.

● Loading sufficient but not overwhelming
data.

● Using effective Colors.
● Make use of the history feature in dialog

boxes to keep track of time-ranges
explored.

25Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Visualization Limitations

● Timeline
– workable time ranges depend heavily on the

event-density of the selected range. (typical
ranges are 10ms-10s worth of time for 10-20
processors)

● Interval-based views (eg. Time Profile)
– keep to 2000 or fewer intervals.

26Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Look Closely!
• Do not be fooled! Projections does not

handle some visualization artifacts well:
– Fine grain details can sometimes look like one

big solid block on timeline.
– It is hard to mouse-over items that represent

fine-grained events.
– Other times, tiny slivers of activity become too

small to be drawn.

27Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Sample Screenshots

28Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Starting Screen/Summary
Starting screen.

Summary graph
only shows up if
“.sum” files are
available.

Shows average
CPU utilization
across all processors
as a function of
time.

29Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Overview
Time progresses
from left to right.

Each row represents
a selected processor.

Color intensity shows
processor utilization.
Black = 0%, shades of
Red 1-99%, White =
100%.

Mouse-over support
for details.

30Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Time Profile
Time progresses
from left to right.

Each bar shows the
amount of time spent
by each colored EP
summed across all
processors during
the associated time-
interval.

Mouse-over support
for more details.

31Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Usage Profile
Shows % CPU
utilization by colored
Eps over selected
time-range.

Each bar represents
a selected processor.
Leftmost bar shows
the average processor
profile.

White represents
scheduler idle time.

32Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Outlier/Extrema Discovery (1)

33Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Outlier/Extrema Discovery (2)
•The leftmost bar shows average processor
profile.

•The 2nd bar shows the non-outlier averge
processor profile.

•The 3rd bar shows the outlier average
processor profile.

•Subsequent bars show outlier processors
ranked from least (left) to most (right)
significant.

34Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Outlier/Extrema Discovery (3)

● Clicking on a processor bar loads the
processor onto an existing Timeline view
using the specified time-range.

● Mouse-overs provide more information
about the time spent by each EP.

35Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Histograms
Time histograms
show EP grainsize
distributions.

Each bar
represents a bin
for EPs that
executed for a
certain duration.

Values are freq
counts.

Mouse-over
supported.

36Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Timeline (1)

37Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Timeline (2)

● Each row represents a processor.
● Shows in detail each colored event.
● White ticks below an event block

represents out-going communication.
● Colored ticks above an event block

visualizes user-events.
● Scheduler Idle time represented by white

“event” blocks.

38Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Timeline (3)
● Lines showing the source of an incoming

message may be drawn by right-clicking
on an event block.

● Left-clicking on an event block shows all
out-going message information for that
event block.

● Mouse-over event blocks to acquire highly
detailed information about each event
block.

39Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Communication Tools
Time progresses
from left to right.

Each bar shows
some communication
attribute associated
to a colored EP.

Mouse-over support
for more detail.

40Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Dialog Boxes

General Dialog Features:

Select Processors.
(e.g. “3-7,15,100-1000:5” will
load data for processors
3,4,5,6,7,15,100,105,...,995,1000)

Select time-ranges.

Time-range history feature.

