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Tutorial Outline
● General Introduction
● Instrumentation
● Trace Generation
● Performance Analysis using Projections
● Using Projections effectively
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General Introduction

● Introduction to Projections

● The Basic Charm++ Model

● NAMD as a case study application
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Projections
● Projections is a performance tool designed 

for use with Charm++.
● Trace-based, post-mortem human-centric 

analysis.
● Supports highly detailed traces, summary 

formats and a flexible user-level API.
● Java-based visualization tool for 

presenting performance information
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What you will need
● A version of Charm++ built without the 

CMK_OPTIMIZE flag. (Note: This tends to be the 
default build)

● Java Runtime 1.3.1 or higher
● Projections Visualization binary.

– Distributed with the Charm++ source. (in 
tools/projections)

– Acquire a standalone Java archive 
(projections.jar)
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The Basic Charm++ Model
● Object-Oriented. 

Chares encapsulate 
data and entry 
methods.

● Message-driven. An 
entry method is 
scheduled for 
execution on a 
processor when a 
message arrives.



7Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

NAMD as a case study
● Spatial decomposition into 

Patches (blue).

● Force decomposition into 
“Computes” (magenta 
diamonds)

● Different force types 
(bonded, non-bonded, ...)

● Long-range electrostatics 
computed using Particle 
Mesh Ewald (PME) method.
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Instrumentation

● Basics
● Application Programmer Interface (API)

– User specific events

– Turning tracing on/off
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Instrumentation: Basics
● Nothing to do!
● The Charm++ runtime automatically 

instruments entry method execution and 
communication events. (as described in the Basic 
Charm++ Model)

● In a majority of cases, this generates very 
useful data for analysis yet introduces 
minimal overhead/perturbation.
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Instrumentation: User Events
● If user-defined events are required, these 

can be inserted into application code:
Register:

int traceRegisterUserEvent(char* EventDesc, int EventNum=-1)

Track a Point-Event:

void traceUserEvent(int EventNum)

Track a Bracketed-Event:

void traceUserBracketEvent(int EventNum, double StartTime, double 
EndTime)
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Instrumentation: 
Selective Tracing (1)

● API also exists for selective tracing of 
application code. Why do we want this?

YES

NO
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Selective Tracing (2)

● Simple Interface, not so easy to use:
void traceBegin()

void traceEnd()

● Calls have per-processor effects, but is 
called from entry methods encapsulated in 
objects.

● Best place to make these calls are 
at/around synchronization points.
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Selective Tracing Example
  // in the case when trace is off at the beginning,

  // only turn trace of from after the first LB to the firstLdbStep after

  // the second LB.

  // 1    2   3     4     5          6   7

  // off on Alg7 refine refine ...  on

#if CHARM_VERSION >= 050606

  if (traceAvailable()) {

    static int specialTracing = 0;

    if (ldbCycleNum == 1 && traceIsOn() == 0)  specialTracing = 1;

    if (specialTracing) {

      if (ldbCycleNum == 4) traceBegin();

      if (ldbCycleNum == 6) traceEnd();

    }

  }

#endif
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Trace Generation
● Build time options (tracing modules)

– summary (aggregated data)

– trace logs (event traces)

● Runtime options
– summary resolution control

– buffer control

– output control

– tracing control
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Build Options

● Link into application one or more modules 
for tracing at various levels of detail:
– “-tracemode summary” for aggregated data.

– “-tracemode projections” for event traces.
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Runtime Options (1)

● General options:
– +traceoff tells the tracing framework not to record 

events until it encounters a traceBegin() API call.

– +traceroot <dir> tells the tracing framework which 
folder to write output to.

– +gz-trace tells the tracing framework to output 
compressed data (default is text). This is useful on 
extremely large machine configurations where the attempt to 
write the logs for p processors would overwhelm the IO 
subsystem.
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Summary runtime options

● +sumdetail – tells the framework to aggregate 
data by entry method as well as time-intervals. 
(normal summary data is aggregated only by time-interval)

● +numbins <k> – tells the framework to reserve 
enough memory to hold information for <k> time-
intervals. (default is 10,000 bins)

● +binsize <duration> - tells the framework to 
aggregate data such that each time-interval 
represents <duration> seconds of execution time. 
(default is 1ms)
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Event Trace Options

● +logsize <k> – tells the framework to 
reserve enough buffer memory to hold <k> 
events. (default is 1,000,000 events)
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Memory Usage

● What happens when we run out of 
reserved memory?
– summary: doubles time-interval represented 

by each bin, aggregates data into the first half 
and continues.

– event traces: asynchronously flushes event 
log to disk and continues.
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Memory Usage (2)

● Trade-offs to consider:
– Summary

● Frequency of data compaction.
● Performance data resolution.
● Memory usage (usually not a problem).

– Event Traces
● Frequency of data flushing (this usually perturbs 

the application badly).
● Memory usage.
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Trace Generation: How to?

● Run your application normally (batch or 
interactive).

● When run ends, you will find any number 
of “.log”, “.sum”, “.sts” files generated in the 
directory specified with +traceroot or where 
your binary is located.
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Visualization: Basic Steps

● Run the script:

charm/tools/projections/bin/projections
● You may choose to supply the location for 

a “.sts” file as an argument to tell the tool 
to load performance data associated with 
it.
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Visualization/Analysis Reference
Guide
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Analysis Techniques

● Zoom in/out to find potential problem 
spots.

● Loading sufficient but not overwhelming 
data.

● Using effective Colors.
● Make use of the history feature in dialog 

boxes to keep track of time-ranges 
explored.
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Visualization Limitations

● Timeline
– workable time ranges depend heavily on the 

event-density of the selected range. (typical 
ranges are 10ms-10s worth of time for 10-20 
processors)

● Interval-based views (eg. Time Profile)
– keep to 2000 or fewer intervals.
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Look Closely!
• Do not be fooled! Projections does not 

handle some visualization artifacts well:
– Fine grain details can sometimes look like one 

big solid block on timeline.
– It is hard to mouse-over items that represent 

fine-grained events.
– Other times, tiny slivers of activity become too 

small to be drawn.
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Sample Screenshots
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Starting Screen/Summary
Starting screen.

Summary graph
only shows up if
“.sum” files are
available.

Shows average
CPU utilization
across all processors
as a function of
time.
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Overview
Time progresses
from left to right.

Each row represents
a selected processor.

Color intensity shows
processor utilization.
Black = 0%, shades of
Red 1-99%, White =
100%.

Mouse-over support
for details.
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Time Profile
Time progresses
from left to right.

Each bar shows the
amount of time spent
by each colored EP
summed across all
processors during
the associated time-
interval.

Mouse-over support
for more details.
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Usage Profile
Shows % CPU
utilization by colored
Eps over selected
time-range.

Each bar represents
a selected processor.
Leftmost bar shows
the average processor
profile.

White represents
scheduler idle time.
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Outlier/Extrema Discovery (1)



33Projections Tutorial
Visit us at http://charm.cs.uiuc.edu

Outlier/Extrema Discovery (2)
•The leftmost bar shows average processor 
profile.

•The 2nd bar shows the non-outlier averge 
processor profile.

•The 3rd bar shows the outlier average 
processor profile.

•Subsequent bars show outlier processors 
ranked from least (left) to most (right) 
significant.
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Outlier/Extrema Discovery (3)

● Clicking on a processor bar loads the 
processor onto an existing Timeline view 
using the specified time-range.

● Mouse-overs provide more information 
about the time spent by each EP.
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Histograms
Time histograms
show EP grainsize
distributions.

Each bar
represents a bin
for EPs that
executed for a
certain duration.

Values are freq
counts.

Mouse-over
supported.
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Timeline (1)
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Timeline (2)

● Each row represents a processor.
● Shows in detail each colored event.
● White ticks below an event block 

represents out-going communication.
● Colored ticks above an event block 

visualizes user-events.
● Scheduler Idle time represented by white 

“event” blocks.
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Timeline (3)
● Lines showing the source of an incoming 

message may be drawn by right-clicking 
on an event block.

● Left-clicking on an event block shows all 
out-going message information for that 
event block.

● Mouse-over event blocks to acquire highly 
detailed information about each event 
block.
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Communication Tools
Time progresses
from left to right.

Each bar shows
some communication
attribute associated
to a colored EP.

Mouse-over support
for more detail.
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Dialog Boxes

General Dialog Features:

Select Processors.
(e.g. “3-7,15,100-1000:5” will
load data for processors
3,4,5,6,7,15,100,105,...,995,1000)

Select time-ranges.

Time-range history feature.


