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Observations: Exascale applications

« Development of new models must be driven by
the needs of exascale applications
— Multi-resolution
— Multi-module (multi-physics)
— Dynamic/adaptive: to handle application variation
— Adapt to a volatile computational environment
— Exploit heterogeneous architecture
— Deal with thermal and energy considerations

 So? Consequences:
— Must support automated resource management
— Must support interoperability and parallel composition



Decomposition Challenges

 Current method is to decompose to
pProcessors

— But this has many problems
— deciding which processor does what work in
detail is difficult at large scale

« Decomposition should be independent of
number of processors

— My group’s design principle since early 1990’s
* in Charm++ and AMPI




Processors vs. “WUDU’s

« Eliminate “processor” from programmer’s
vocabulary
— Well, almost

« Decomposition into:
— Work-Units and Data Units (WUDUSs)
— Work-units: code, one or more data units
— Data-units: sections of arrays, meshes, ...

— Amalgams:
* Objects with associated work-units,
« Threads with own stack and heap

 Who does decomposition?
— Programmer, compiler, or both



Different kinds of units

* Migration units:

— objects, migratable threads (i.e., “processes”), data
sections

« DEBs: units of scheduling
— Dependent Execution Block

— Begins execution after one or more (potentially)
remote dependence is satisfied

« SEBs: units of analysis
— Sequential Execution Blocks
— A DEB is partitioned into one or more SEBs

— Has a “reasonably large” granularity, and uniformity
in code structure

— Loop nests, functions, ...



Migratable objects programming
model

« Names for this model:
— Overdecompostion approach
— Object-based overdecomposition
— Processor virtualization
— Migratable-objects programming model



Adaptive Runtime Systems

« Decomposing program into a large number of
WUDUs empowers the RTS, which can:

— Migrate WUDUs at will
— Schedule DEBS at will

— Instrument computation and communication at the
level of these logical units
« WUDU x communicates y bytes to WUDU z every iteration
« SEB A has a high cache miss ratio
— Maintain historical data to track changes in application
behavior
« Historical => previous iterations
« E.g., to trigger load balancing



Over-decomposition and seleni Tels
message-driven

execution Emulation for
Perf Prediction

Automatic overlap, pefetch,
compositionality

Fault Tolerance

Migratability

] Dynamic load balancing
Intros pective and (topology-aware, scalable)

adaptive runtime system

Temperature/power
considerations

Higher-level
abstractions Languages and Frameworks

Control Points
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Utility for Multi-cores, Many-cores,
Accelerators:

« Objects connote and promote locality

« Message-driven execution
— A strong principle of prediction for data and code use

— Much stronger than principle of locality
« Can use to scale memory wall:
« Prefetching of needed data:
— into scratch pad memories, for example
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Impact on communication

e Current use of communication network:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

* So, current communication networks are
over-engineered for by necessity
« With overdecomposition
— Communication is spread over an iteration
— Also, adaptive overlap of communication and
computation
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UI0C



Compositionality

« It is important to support parallel composition
— For multi-module, multi-physics, multi-paradigm
applications...
 What | mean by parallel composition
— B || C where B, C are independently developed modules
— B is parallel module by itself, and so is C
— Programmers who wrote B were unaware of C
— No dependency between B and C

« This is not supported well by MPI

— Developers support it by breaking abstraction
boundaries

« E.g., wildcard recvs in module A to process messages for
module B

— Nor by OpenMP implementations:
. PPL
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Without message-driven execution
(and virtualization), you get either:

Space-division

Time

> PPL
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OR: Sequentialization

Time
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Parallel Composition: AT1; (B || C); A2

G
Recall: Different modules, written in different
languages/paradigms, can overlap in time

and on processors, without programmer
having to worry about this explicitly
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Decomposition Independent of numCores

« Rocket simulation example under traditional MPI

Solid

Fluid

1

Solid

Fluid

2

With migratable-objects:

Solid,

Solid,

Solid

Fluid

Fluid,

Solid,

Fluid,

P

Solid,

Fluid,,

— Benefit: load balance, communication optimizations, modularity
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Charm++ and CSE Applications

Well-known Biophysics
molecular simulations App

Nano-Materials..
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Object Based Over-decomposition:
Charm++

« Multiple “indexed collections” of C++ objects

 Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View
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Parallelization Using Charm++

The computation is decomposed into “natural” objects of the application, which
are assigned to processors by Charm++ RTS

Patch Integration
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Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium, Miami, FL, USA, April 2008.
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Time Profile Graph
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Performance on Intrepid (BG/P)
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SMP Performance on Titan(Dev)
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Object Based Over-decomposition:
AMPI

« Each MPI process is implemented as a user-level
thread

 Threads are light-weight and migratable!
— <1 microsecond context switch time, potentially >100k threads per core

« Each thread is embedded in a charm++ object (chare)

MPI
processes

Virtual
Processors
(user-level
migratable

J threads)
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A quick Example:
Weather Forecasting in BRAMS

 Brams: Brazillian weather code (based on RAMS)

« AMPI version (Eduardo Rodrigues, with Mendes
and J. Panetta)
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Usage Percent %

Baseline: 64 objects on 64 processors
100
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Usage Percent %

100

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap
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With Load Balancing:

1024 objects on 64 processors
100

85
a0
75
70
65
60
55

No overdecomp (64 threads) 4988 sec
40 Overdecomp into 1024 threads 3713 sec
30 Load balancing (1024 threads) 3367 sec

Usage Percent %
%y
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Principle of Persistence

 Once the computation is expressed in terms of
its natural (migratable) objects

« Computational loads and communication
patterns tend to persist, even in dynamic
computations

« So, recent past is a good predictor of near
future

In spite of increase 1n irregularity and
adaptivity, this principle still applies at
exascale, and 1s our main friend.
PPL
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Measurement-based Load Balancing

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

» PPL
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ChaNGa: Parallel Gravity Evolution of Universe and
Galaxy Formation

« Collaborative project
(NSF)

— with Tom Quinn, Univ. of
Washington

« Gravity, gas dynamics

« Barnes-Hut tree codes
— Oct tree is natural decomp

— Geometry has better
aspect ratios, so you
“open” up fewer nodes

— But is not used because it
leads to bad load balance

— Assumption: one-to-one With Charm++: Use Oct-Tree, and
map between sub-trees let Charm++ map subtrees to

and PEs

— Binary trees are considered
better load balanced

8/29/12 cs598LVK ol PPL

UI10C

processors



Control flow
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CPU Performance

ChaMNGa Strong Scaling on BG/P
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Force Computation Time (s)
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GPU Performance

ChaNGa CPU/GPU Scaling Comparison
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Load Balancing for Large Machines: |

« Centralized balancers achieve best balance

— Collect object-communication graph on one
processor

— But won’t scale beyond tens of thousands of nodes
« Fully distributed load balancers
— Avoid bottleneck but... Achieve poor load balance
— Not adequately agile
« Hierarchical load balancers

— Careful control of what information %oes up and
down the hierarchy can lead to fast, high—-quality
balancers

» Need for a universal balancer that works for all
applications

 PPL
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Load Balancing for Large Machines: Il

* Interconnection topology starts to matter again
— Was hidden due to wormhole routing etc.
— Latency variation is still small
— But bandwidth occupancy is a problem

« Topology aware load balancers

— Some general heuristic have shown good
performance

« But may require too much compute power

— Also, special-purpose heuristic work fine when
applicable

— Still, many open challenges

» PPL
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OpenAtom

Car-Parinello Molecular Dynamics
NSF ITR 2001-2007, IBM, DOE

Molecular Clusters : Nanowires:

G. Martyna (IBM)
M. Tuckerman (NYU)
L. Kale (UIUC)

J. Dongarra

Semiconductor Surfaces: 3D- 52|IC|S/LICIUIC|S
R S NS, N a
Using Charm++ virtualization, we can efﬁc1ently scale

small (32 molecule) systems to thousands of processors
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Decomposition and Computation
e
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Topology Aware Mapping of Objects
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Improvements by topological aware
mapping of computation to processors
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OpenAtom Performance Sampler

Ongoing work on:
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Saving Cooling Energy

« Some cores/chips might get too hot

— We want to avoid

* Running everyone at lower speed,
« Conservative (expensive) cooling

« Reduce frequency (DVFS) of the hot cores?

— Works fine for sequential computing

— In parallel:
« There are dependences/barriers

« Slowing one core down by 40% slows the whole
computation by 40%!

— Big loss when the #processors is large

Migratable Objeets to the rescue!

o PPL
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Temperature-aware Load Balancing

« Reduce frequency if temperature is high
— Independently for each core or chip

« Migrate objects away from the slowed-down
Processors
— Balance load using an existing strategy
— Strategies take speed of processors into account

« Recently implemented in experimental version
— SC 2011 paper

« PPL
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Cooling Energy Consumption
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Benefits of Temperature Aware LB
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Benefits of Temperature Aware LB
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Other Power-related Optimizations

« Other optimizations are in progress:
— Staying within given energy budget, or power budget

« Selectively change frequencies so as to minimize impact
on finish time

— Reducing power consumed with low impact on finish
time
 ldentify code segments (methods) with high miss-rates
— Using measurements (principle of persistence)
« Reduce frequencies for those,
« and balance load with that assumption

— Use critical paths analysis:

* Slow down methods not on critical paths
« Aggressive: migrate critical-path objects to faster cores

i)
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Fault Tolerance in Charm++/AMPI

« Four Approaches:
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object migration
— Message-logging: scalable fault tolerance

e« Common Features:

— Easy checkpoint:
* migrate-to-disk leverages object-migration capabilities
— Based on dynamic runtime capabilities

— Can be used in concert with load-balancing
schemes

7 PPL
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In-memory checkpointing

« |s practical for many apps
— Relatively small footprint at checkpoint time

« Very fast times...

« Demonstration challenge:
— Works fine for clusters

— For MPIl-based implementations running at centers:
« Scheduler does not allow job to continue on failure
« Communication layers not fault tolerant

— Fault injection: dieNow(),
— Spare processors

)
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Restart Time — Intrepid(leanMD)
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Scalable Fault tolerance

e Faults will be common at exascale
— Failstop, and soft failures are both important

« Checkpoint-restart may not scale

— Requires all nodes to roll back even when just
one fails
 Inefficient: computation and power

— As MTBF goes lower, it becomes infeasible

= PPL
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Message-Logging

« Basic ldea:
— Messages are stored by sender during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “resent” messages to regain
state

« Does it help at exascale?
— Not really, or only a bit: Same time for recovery!

« With virtualization,

— work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well

)
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Message-Logging (cont.)

Fast Parallel restart performance:
— Test: 7-point 3D-stencil in MPI, P=32,2 < VP < 16
— Checkpoint taken every 30s, failure inserted at t=27s
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IOMO(

Power consumption
1S continuous

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures
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- Power consumption

recovery

Message logging +
/ Object-based

/ virtualization

Progress 1s faster
with failures
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HPC Challenge Competition

« Conducted at Supercomputing

o 2 parts:
— Class |I: machine performance

— Class II: programming model productivity
« Has been typically split in two sub-awards

— We implemented in Charm++
LU decomposition
« RandomAccess
« LeanMD
 Barnes-Hut

 Main competitors this year:
— Chapel (Cray), CAF (Rice), and Charm++ (UIUC)

s PPL
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Strong Scaling on Hopper for
LeanMD

Gemini Interconnect, much less noisy

Performance on Hopper (125,000 atoms)
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CharmLU: productivity and

performance
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Charm++ interoperates with MPI

(a) Time Sharing

NN O s O 2

TN OO s OeE3 g

%% MPI Control
Charm++
Control

(]
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A View of an Interoperable Future
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Interoperability allows faster evolution of programming models

Evolution doesn’t lead to a single winner species,
but to a stable and effective ecosystem.

Similarly, we will get to a collection of viable
programming models that co-exists well together.
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Summary

Do away with the notion of processors

— Adaptive Runtimes, enabled by migratable-objects
programming model
 Are necessary at extreme scale
« Need to become more intelligent and introspective
« Help manage accelerators, balance load, tolerate faults,
Interoperability, concurrent composition become even
more important
— Supported by Migratable Objects and message-driven
execution
Charm++ is production-quality and ready for your
application!
— You can interoperate with Charm++, AMPI, MPI and OpenMP
modules
New programming models and frameworks
— Create an ecosystem/toolbox of programming paradigms
rather than one “super” language

More Info: http://charm.cs.illinois.edu/




