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Observations: Exascale applications 

•  Development of new models must be driven by 
the needs of exascale applications 
–  Multi-resolution 
–  Multi-module (multi-physics) 
–  Dynamic/adaptive: to handle application variation 
–  Adapt to a volatile computational environment 
–  Exploit heterogeneous architecture 
–  Deal with thermal and energy considerations 

•  So? Consequences: 
–  Must support automated resource management 
–  Must support interoperability and parallel composition 
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Decomposition Challenges 
•  Current method is to decompose to 

processors 
–  But this has many problems 
–  deciding which processor does what work in 

detail is difficult at large scale 
•  Decomposition should be independent of 

number of processors 
–  My group’s design principle since early 1990’s 

•  in Charm++ and AMPI 
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Processors vs. “WUDU”s 
•  Eliminate “processor” from programmer’s 

vocabulary 
–  Well, almost 

•  Decomposition into:   
–  Work-Units and Data Units (WUDUs) 
–  Work-units: code, one or more data units 
–  Data-units: sections of arrays, meshes, … 
–  Amalgams:  

•  Objects with associated work-units,  
•  Threads with own stack and heap 

•  Who does decomposition? 
–  Programmer, compiler, or both 
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Different kinds of units 
•  Migration units:  

–  objects, migratable threads (i.e., “processes”), data 
sections 

•  DEBs: units of scheduling 
–  Dependent Execution Block 
–  Begins execution after one or more (potentially) 

remote dependence is satisfied 
•  SEBs: units of analysis 

–  Sequential Execution Blocks 
–  A DEB is partitioned into one or more SEBs 
–  Has a “reasonably large” granularity, and uniformity 

in code structure 
–  Loop nests, functions, … 
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Migratable objects programming 
model 

•  Names for this model: 
–  Overdecompostion approach 
–  Object-based overdecomposition 
–  Processor virtualization 
–  Migratable-objects programming model 
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Adaptive Runtime Systems 
•  Decomposing program into a large number of 

WUDUs empowers the RTS, which can: 
–  Migrate WUDUs at will 
–  Schedule DEBS at will 
–  Instrument computation and communication at the 

level of these logical units 
•  WUDU x communicates y bytes to WUDU z every iteration 
•  SEB A has a high cache miss ratio 

–  Maintain historical data to track changes in application 
behavior 

•  Historical => previous iterations 
•  E.g., to trigger load balancing 
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Over-decomposition and 
message-driven 

execution 

Migratability 

Introspective and 
adaptive runtime system 

Control Points 

Higher-level 
abstractions 

Scalable Tools 
Automatic overlap, pefetch, 

compositionality 
Emulation for 
Perf Prediction 

Fault Tolerance 

Dynamic load balancing 
(topology-aware, scalable) 

Languages and Frameworks 

Temperature/power 
considerations 
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Utility for Multi-cores, Many-cores, 
Accelerators: 

•  Objects connote and promote locality 
•  Message-driven execution 

–  A strong principle of prediction for data and code use 
–  Much stronger than principle of locality 

•  Can use to scale memory wall: 
•  Prefetching of needed data:  

–  into scratch pad memories, for example 
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Impact on communication 

•  Current use of communication network: 
–  Compute-communicate cycles in typical MPI apps 
–  So, the network is used for a fraction of time,  
–  and is on the critical path 

•  So, current communication networks are 
over-engineered for by necessity 

•  With overdecomposition 
–  Communication is spread over an iteration 
–  Also, adaptive overlap of communication and 

computation 
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Compositionality 
•  It is important to support parallel composition 

–  For multi-module, multi-physics, multi-paradigm 
applications… 

•  What I mean by parallel composition 
–  B || C where B, C are independently developed modules 
–  B is parallel module by itself, and so is C 
–  Programmers who wrote B were unaware of C  
–  No dependency between B and C 

•  This is not supported well by MPI 
–  Developers support it by breaking abstraction 

boundaries 
•  E.g., wildcard recvs in module A to process messages for 

module B 
–  Nor by OpenMP implementations:  
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Without message-driven execution 
(and virtualization), you get either: 
Space-division 

Time 

B 

C 
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OR: Sequentialization 

Time 

B 

C 
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Parallel Composition: A1; (B || C ); A2 

Recall: Different modules, written in different 
languages/paradigms, can overlap in time 
and on processors, without programmer 
having to worry about this explicitly 



Decomposition Independent of numCores 

•  Rocket simulation example under traditional MPI 
 

•  With migratable-objects:  

–  Benefit: load balance, communication optimizations, modularity 
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Charm++ and CSE Applications 
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Enabling	
  CS	
  technology	
  of	
  parallel	
  objects	
  and	
  intelligent	
  run8me	
  
systems	
  has	
  led	
  to	
  several	
  CSE	
  collabora8ve	
  applica8ons	
  

Synergy	
  

Well-­‐known	
  Biophysics	
  
molecular	
  simula8ons	
  App	
  	
  

Gordon	
  Bell	
  Award,	
  2002	
  

Computa8onal	
  
Astronomy	
  

Nano-­‐Materials..	
  

ISAM 

CharmSimdemics 

Stochastic 
Optimization 



Object Based Over-decomposition: 
Charm++ 
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User View 

System implementation 

•  Multiple “indexed collections” of C++ objects 
•  Indices can be multi-dimensional and/or sparse 
•  Programmer expresses communication between objects 

–  with no reference to processors 



Parallelization Using Charm++ 
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Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling Challenges in 
Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE International Parallel and 
Distributed Processing Symposium, Miami, FL, USA, April 2008. 

The computation is decomposed into “natural” objects of the application, which 
are assigned to processors by Charm++ RTS 
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green: communication 

Red: integration Blue/Purple: electrostatics 

turquoise: angle/dihedral 

Orange: PME 

Apo-A1, on BlueGene/L, 1024 procs 

Charm++’s “Projections” Analysis tool 

Time intervals on x axis, activity added across 
processors on Y axis 

Time 
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SMP Performance on Titan(Dev) 

21 

9 ms/step Number of cores 

Ti
m

es
te

p 
(m

s/
st

ep
) 

 25

 125

298992128K64K16K4K

Cutoff only
PME every 4 steps

13ms/
step 

8/29/12 cs598LVK 



Object Based Over-decomposition: 
AMPI 

•  Each MPI process is implemented as a user-level 
thread 

•  Threads are light-weight and migratable! 
–  <1 microsecond context switch time, potentially >100k threads per core 

•  Each thread is embedded in a charm++ object (chare) 

cs598LVK 

Real Processors 

MPI 
processes 

Virtual 
Processors 
(user-level 
migratable 
threads) 
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A quick Example:  
Weather Forecasting in BRAMS 

•  Brams: Brazillian weather code (based on RAMS) 
•  AMPI version (Eduardo Rodrigues, with Mendes 

and J. Panetta) 
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Baseline: 64 objects on 64 processors 
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Over-decomposition: 1024 objects on 64 processors:  
Benefits from communication/computation overlap 
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With Load Balancing:  
1024 objects on 64 processors 

No overdecomp (64 threads) 4988 sec 
Overdecomp into 1024 threads 3713 sec 
Load balancing (1024 threads) 3367 sec 



Principle of Persistence 
•  Once the computation is expressed in terms of 

its natural (migratable) objects 
•  Computational loads and communication 

patterns tend to persist, even in dynamic 
computations 

•  So, recent past is a good predictor of near 
future 
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In spite of increase in irregularity and 
adaptivity, this principle still applies at 
exascale, and is our main friend. 



Measurement-based Load Balancing 
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Regular 
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Instrumented 
Timesteps 
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Balancing 

Refinement Load 
Balancing 



ChaNGa: Parallel Gravity 
•  Collaborative project 

(NSF) 
–  with Tom Quinn, Univ. of 

Washington 
•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better 

aspect ratios, so you 
“open” up fewer nodes 

–  But is not used because it 
leads to bad load balance 

–  Assumption: one-to-one 
map between sub-trees 
and PEs 

–  Binary trees are considered 
better load balanced 
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With Charm++: Use Oct-Tree, and 
let Charm++ map subtrees to 
processors 

Evolution of Universe and 
Galaxy Formation 



Control flow 
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CPU Performance 
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GPU Performance 
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Load Balancing for Large Machines: I 

•  Centralized balancers achieve best balance 
–  Collect object-communication graph on one 

processor 
–  But won’t scale beyond tens of thousands of nodes 

•  Fully distributed  load balancers 
–  Avoid bottleneck but… Achieve poor load balance 
–  Not adequately agile 

•  Hierarchical load balancers 
–  Careful control of what information goes up and 

down the hierarchy can lead to fast, high-quality 
balancers 

•  Need for a universal balancer that works for all 
applications 
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Load Balancing for Large Machines: II 

•  Interconnection topology starts to matter again 
–  Was hidden due to wormhole routing etc.  
–  Latency variation is still small 
–  But bandwidth occupancy is a problem 

•  Topology aware load balancers 
–  Some general heuristic have shown good 

performance 
•  But may require too much compute power 

–  Also, special-purpose heuristic work fine when 
applicable 

–  Still, many open challenges 
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OpenAtom 
Car-Parinello Molecular Dynamics 

NSF ITR 2001-2007, IBM, DOE 
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Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

G. Martyna (IBM)  
M. Tuckerman (NYU) 

L. Kale (UIUC) 
J. Dongarra 

Using Charm++ virtualization, we can efficiently scale 
small (32 molecule) systems to thousands of processors 



Decomposition and Computation 
Flow 
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Topology Aware Mapping of Objects 
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Improvements by topological aware 
mapping of computation to processors 

8/29/12 cs598LVK 39 

The simulation of the right panel, maps computational work to processors taking the network 
connectivity into account while the left panel simulation does not. The “black’’ or idle time 
processors spent waiting for computational work to arrive on processors is significantly 
reduced at left. (256waters, 70R, on BG/L 4096 cores) 

Punchline: Overdecomposition into Migratable Objects created the 
degree of freedom needed for flexible mapping  



OpenAtom Performance Sampler 

8/29/12 cs598LVK 40 

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:  
K-points 
 



Saving Cooling Energy 

•  Some cores/chips might get too hot 
–  We want to avoid  

•  Running everyone at lower speed,  
•  Conservative (expensive) cooling 

•  Reduce frequency (DVFS) of the hot cores? 
–  Works fine for sequential computing 
–  In parallel: 

•  There are dependences/barriers 
•  Slowing one core down by 40% slows the whole 

computation by 40%! 
–  Big loss when the #processors is large 
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Temperature-aware Load Balancing 
•  Reduce frequency if temperature is high 

–  Independently for each core or chip 
•  Migrate objects away from the slowed-down 

processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Recently implemented in experimental version 
–  SC 2011 paper 
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Cooling Energy Consumption 

•  Both schemes save energy as cooling energy 
consumption depends on CRAC set-point (TempLDB 
better) 

•  Our scheme saves up to 57% (better than w/o TempLDB) 
mainly due to smaller timing penalty 
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Jacobi2D on 128 
Cores 
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Benefits	
  of	
  Temperature	
  Aware	
  LB	
  

Zoomed	
  projec8on	
  8meline	
  for	
  two	
  itera8ons	
  without	
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  aware	
  
LB	
  

Projec8ons	
  8meline	
  without	
  (top)	
  and	
  with	
  (boTom)	
  temperature	
  aware	
  LB	
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Other Power-related Optimizations 
•  Other optimizations are in progress: 

–  Staying within given energy budget, or power budget 
•  Selectively change frequencies so as to minimize impact 

on finish time 
–  Reducing power consumed with low impact on finish 

time 
•  Identify code segments (methods) with high miss-rates 

–  Using measurements (principle of persistence) 
•  Reduce frequencies for those,  
•  and balance load with that assumption 

–  Use critical paths analysis:  
•  Slow down methods not on critical paths 
•  Aggressive: migrate critical-path objects to faster cores  
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Fault Tolerance in Charm++/AMPI 

•  Four Approaches: 
–  Disk-based checkpoint/restart 
–  In-memory double checkpoint/restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint:  

•  migrate-to-disk leverages object-migration capabilities 
–  Based on dynamic runtime capabilities 
–  Can be used in concert with load-balancing 

schemes 
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In-memory checkpointing 
•  Is practical for many apps 

–  Relatively small footprint at checkpoint time 
•  Very fast times… 
•  Demonstration challenge:  

–  Works fine for clusters 
–  For MPI-based implementations running at  centers:  

•  Scheduler does not allow job to continue on failure 
•  Communication layers not fault tolerant 

–  Fault  injection: dieNow(),  
–  Spare processors 
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Scalable Fault tolerance 

•  Faults will be common at exascale 
–  Failstop, and soft failures are both important 

•  Checkpoint-restart may not scale 
–  Requires all nodes to roll back even when just 

one fails 
•  Inefficient: computation and power 

–  As MTBF goes lower, it becomes infeasible 
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Message-Logging 
•  Basic Idea: 

–  Messages are stored by sender during execution 
–  Periodic checkpoints still maintained 
–  After a crash, reprocess “resent” messages to regain 

state 
•  Does it help at exascale?  

–  Not really, or only a bit: Same time for recovery! 
•  With virtualization,  

–  work in one processor is divided across multiple 
virtual processors; thus, restart can be parallelized 

–  Virtualization helps fault-free case as well 
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Message-Logging (cont.) 
•  Fast Parallel restart performance: 

–  Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16 
–  Checkpoint taken every 30s, failure inserted at t=27s 
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Power consumption 
is continuous 

Progress is slowed 
down with failures 
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Message logging + 
Object-based 
virtualization 
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Power consumption 
is lower during 
recovery 

Progress is faster 
with failures 



HPC Challenge Competition 
•  Conducted at Supercomputing 
•  2 parts:  

–  Class I: machine performance 
–  Class II: programming model productivity 

•  Has been typically split in two sub-awards 
–  We implemented in Charm++ 

•  LU decomposition 
•  RandomAccess 
•  LeanMD 
•  Barnes-Hut 

•  Main competitors this year: 
–  Chapel (Cray), CAF (Rice), and Charm++ (UIUC) 
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Strong Scaling on Hopper for 
LeanMD 
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Gemini Interconnect, much less noisy 



CharmLU: productivity and 
performance 

•  1650 lines of source 
•  67% of peak on Jaguar 
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Barnes-Hut 
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Charm++ interoperates with MPI 

Charm++ 
Control 
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A View of an Interoperable Future 
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X10 
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Interoperability allows faster evolution of programming models 

Evolution doesn’t lead to a single winner species, 
but to a stable and effective ecosystem. 
 
Similarly, we will get to a collection of viable 
programming models that co-exists well together. 



Summary 
•  Do away with the notion of processors 

–  Adaptive Runtimes, enabled by migratable-objects 
programming model 

•  Are necessary at extreme scale 
•  Need to become more intelligent and introspective 
•  Help manage accelerators, balance load, tolerate faults, 

•  Interoperability, concurrent composition become even 
more important 
–  Supported by Migratable Objects and message-driven 

execution 
•  Charm++ is production-quality and ready for your 

application! 
–  You can interoperate with Charm++, AMPI, MPI and OpenMP 

modules 
•  New programming models and frameworks 

–  Create an ecosystem/toolbox of programming paradigms 
rather than one “super” language 
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More Info: http://charm.cs.illinois.edu/ 


